{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Status:
Investigational
Source:
NCT03284385: Phase 2 Interventional Active, not recruiting Clear Cell Renal Cell Carcinoma
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
AZD1775 selectively targets and inhibits WEE1, a tyrosine kinase that phosphorylates cyclin-dependent kinase 1 (CDK1, CDC2) to inactivate the CDC2/cyclin B complex. Inhibition of WEE1 activity prevents the phosphorylation of CDC2 and impairs the G2 DNA damage checkpoint. This may lead to apoptosis upon treatment with DNA damaging chemotherapeutic agents. Current ongoing trials of AZD1775 include monotherapy and combination therapy with certain DNA damaging agents in solid tumors, ovarian tumors, gynaecological cancer, non-small cell lung cancer. AZD1775 is genotoxic, which is considered to be a result of its mechanism of action. Common serious adverse events (with chemotherapy) include: febrile neutropenia, neutropenia, thrombocytopenia.
Status:
Investigational
Source:
NCT00427349: Phase 2 Interventional Completed Gastrointestinal Carcinoid Tumor
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Motesanib (AMG 706), a novel nicotinamide, was identified as a potent, orally bioavailable inhibitor of the VEGFR1/Flt1, VEGFR2/kinase domain receptor/Flk-1, VEGFR3/Flt4 and Kit receptors. Motesanib was expected to reduce vascular permeability and blood flow in human tumours. A phase III trial of motesanib in combination with paclitaxel and carboplatin in non-squamous NSCLC has been terminated by Takeda and subsequently the development was discontinued. Motesanib has also been investigated up to phase II in breast, thyroid, colorectal and gastrointestinal stromal tumours. However, development has been discontinued in these indications.
Status:
Investigational
Source:
NCT00050830: Phase 2 Interventional Completed Lung Neoplasms
(2003)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Canertinib or CI-1033 (N-[4-[N-(3-Chloro-4-fluorophenyl)amino]-7-[3-(4-morpholinyl)propoxy]quinazolin-6-yl]acrylamide) is a pan-erbB tyrosine kinase inhibitor. It selectively inhibits erbB1 (epidermal growth factor receptor), erbB2, erbB3, and erbB4 without inhibiting tyrosine kinase activity of receptors such as platelet-derived growth factor receptor, fibroblast growth factor receptor, and insulin receptor, even at high concentrations. Canertinib was under development by Pfizer Inc as a potential treatment for cancer.
Status:
Investigational
Source:
NCT04307953: Phase 2 Interventional Recruiting Fibrodysplasia Ossificans Progressiva
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saracatinib (AZD0530) is an oral, dual inhibitor of c-Src/Abl kinases initially developed by AstraZeneca for the treatment of cancer. The drug was tested for many neoplasms and reached phase III for ovarian cancer (in combination with paclitaxel), however without demonstrating any significant effect. Sarcatinib is also tested in patients with Alzheimer's Disease (Phase II). Its effect on Alzheimer's Disease patients is explained by inhibition of another kinase, Fyn, which is highly expressed in brain.
Status:
Investigational
Source:
NCT00992225: Phase 2 Interventional Completed Breast Cancer
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tasisulam sodium, previously known as LY573636, were initially recognized by Eli Lilly for their significant antiproliferative activities in solid tumor cell lines, but their mechanism of action was unknown. Subsequent studies have revealed that LY573636 induces apoptosis via a mitochondrial-mediated mechanism that appears unique among other anti-cancer compounds. This drug was in the phase III clinical trial for the treatment of Metastatic Melanoma and in phase II for the treatment Non-Small-Cell Lung Cancer, breast cancer, ovarian cancer, but these studies were discontinued. In vivo pharmacokinetic studies in rats and dogs indicate that tasisulam is metabolized primarily by the liver, and has low total plasma clearance with a relatively long half-life. In addition, there was preclinical evidence of a correlation between the maximum plasma concentration (Cmax) of tasisulam and toxicity.
Status:
Investigational
Source:
NCT00699517: Phase 3 Interventional Completed Sarcoma
(2008)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ombrabulin is an experimental drug candidate discovered by Ajinomoto and further developed by Sanofi-Aventis for cancer treatment.
Ombrabulin is a synthetic water-soluble analog of combretastatin A4, derived from the South African willow bush (Combretum caffrum), with potential vascular-disrupting and antineoplastic activities. Ombrabulin binds to the colchicine binding site of endothelial cell tubulin, inhibiting tubulin polymerization and inducing mitotic arrest and apoptosis in endothelial cells. As apoptotic endothelial cells detach from their substrate, tumor blood vessels collapse; the acute disruption of tumor blood flow may result in tumor necrosis. Ombrabulin has been used in trials studying the treatment of Sarcoma, Neoplasms, Solid Tumor, Neoplasms, Malignant, and Advanced Solid Tumors, among others. In January 2013, Sanofi said it discontinued development of Ombrabulin after disappointing results from phase III clinical trials.
Status:
Investigational
Source:
NCT02279602: Phase 2 Interventional Completed Neuroendocrine Tumors
(2014)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fosbretabulin (Combretastatin A4 phosphate, CA4P) is the lead compound of a relatively new class of agents termed vascular disrupting agents that target existing tumor blood vessels. Rapid tumor blood flow shutdown has been demonstrated in preclinical models and patients by various techniques such as dynamic contrast-enhanced MRI, perfusion computed tomography and PET scans following CA4P infusion. CA4P typically induces rapid tumor necrosis in the center of the tumor and leaves a rim of viable cells in the periphery. In oncology, CA4P does not appear to be that active by itself, but may be more efficacious when combined with chemotherapy, antiangiogenic therapy and radiation therapy. Combretastatin was initially isolated from the
root bark of the South African Bush willow
Combretum caffrum in 1982 by Pettit and colleagues
at the Arizona State University (AZ, USA). Combretastatin A4 phosphate binds avidly to tubulin at the colchicine-binding site to inhibit microtubule assembly and destabilize the cytoskeleton. CA4P is a tubulin-binding agent that binds at or near the colchicine binding site of β-tubulin (Kd = 0.40 uM), inhibits tubulin assembly with IC50 of 2.4 uM. Fosbretabulin has orphan drug status in the EU and the US for the treatment of ATC (Anaplastic Thyroid Cancer). Later the development of this drug was discontinued.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Elinafide (LU 79553) is a bisintercalating naphthalamide and a topoisomerase II inhibitor has demonstrated a higher binding affinity for DNA and significant antitumour efficacy against a panel of established tumour cell lines, including several multidrug resistant-positive sublines. Elinafide had been in phase II clinical trial for the treatment of ovarian cancer and phase I trials for the treatment of various solid tumours. The major haematological toxicities observed were anaemia and neutropenia. The major non-haematological toxicities observed in the 3-weekly schedule were neuro-muscular presenting clinically as a mixed syndrome of severe weakness (sometimes with pain in both legs), myalgia and arthralgia, asthenia/fatigue/malaise. One fatality was considered related to LU 79553, as the patient had fever and neutropenia. Clinical study of this drug candidate was discontinued due to its neuromuscular dose-limiting toxicity.
Status:
Investigational
Source:
NCT02535312: Phase 1/Phase 2 Interventional Active, not recruiting Advanced Malignant Solid Neoplasm
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Methoxyamine (TRC102) is an orally bioavailable small molecule with potential adjuvant activity, that may potentiate the antitumor activity of alkylating agents. Methoxyamine covalently binds to apurinic/apyrimidinic (AP) DNA damage sites and inhibits base excision repair (BER) that causes topoisomerase II-dependent irreversible strand breaks and apoptosis. Methoxyamine is currently being studied in multiple Phase 1 and Phase 2 clinical trials sponsored by the National Cancer Institute or Case Comprehensive Cancer Center.
Status:
Investigational
Source:
NCT00363454: Phase 1 Interventional Completed Cancer
(2006)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Triciribine is a purine analogue which inhibits DNA and protein synthesis, it is a synthetic tricyclic nucleoside which acts as a specific inhibitor of the Akt signaling pathway. It selectively inhibits the phosphorylation and activation of Akt1, -2 and -3 but does not inhibit Akt kinase activity nor known upstream Akt activators such as PI 3-Kinase and PDK1. It inhibits cell growth and induces apoptosis preferentially in cells that express aberrant Akt1. In whole cells triciribine is phosphorylated by adenosine kinase which may be necessary for its activity. Triciribine is a cancer drug which was first synthesised in the 1970s and trialled clinically in the 1980s and 1990s without success. Following the discovery in the early 2000s that the drug would be effective against tumours with hyperactivated Akt, it is now again under consideration in a variety of cancers. As PTX-200, the drug is currently in two early stage clinical trials in breast cancer and ovarian cancer being conducted by the small molecule drug development company Prescient Therapeutics.