U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
PF-04965842 is an orally administered selective Janus kinase 1 (JAK1) inhibitor. PF-04965842 is currently in clinical trials for the treatment of autoimmune diseases.
Crisaborole is a topically administered, boron-containing, anti-inflammatory compound that inhibits the phosphodiesterase-4 (PDE4) activity and thereby suppresses the cytokine release of TNFalpha, IL-12, IL-23 and other cytokines. PDE4 is an an enzyme that converts the intracellular second messenger 3'5'-cyclic adenosine monophosphate (cAMP) into the active metabolite adenosine monophosphate (AMP). By inhibiting PDE4 and thus increasing levels of cAMP, crisaborole controls inflammation. The use of boron chemistry enabled synthesis of a low-molecular-weight compound (251 daltons), thereby facilitating effective penetration of crisaborole through human skin. Crisaborole is in clinical development for the topical treatment of psoriasis and being pursued for the topical treatment of atopic dermatitis. Preliminary studies in children and adults demonstrated favorable efficacy and safety profiles. Crisaborole may represent an anti-inflammatory option that safely minimizes the symptoms and severity of AD and that can be used for both acute and long-term management.
Status:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pimecrolimus, an ascomycin macrolactam derivative, is an inhibitor of T-cell and mast-cell activation, developed and launched by Novartis for the potential treatment of psoriasis and allergic, irritant and atopic dermatitis. The topical formulation had been launched in the US by February 2002 for mild-to-moderate atopic dermatitis in patients aged two years and older. Pimecrolimus is an immunomodulating agent. The mechanism of action of pimecrolimus in atopic dermatitis is not known. While the following have been observed, the clinical significance of these observations in atopic dermatitis is not known. It has been demonstrated that pimecrolimus binds with high affinity to macrophilin-12 (FKBP-12) and inhibits the calcium dependent phosphatase, calcineurin. Therefore, it inhibits T cell activation by blocking the transcription of early cytokines. In particular, pimecrolimus inhibits at nanomolar concentrations Interleukin-2 and interferon gamma (Th1-type) and Interleukin-4 and Interleukin-10 (Th2-type) cytokine synthesis in human T-cells. In addition, pimecrolimus prevents the release of inflammatory cytokines and mediators from mast cells in vitro after stimulation by antigen/IgE. Following the administration of a single oral radiolabeled dose of pimecrolimus numerous circulating O-demethylation metabolites were seen. Studies with human liver microsomes indicate that pimecrolimus is metabolized in vitro by the CYP3A sub-family of metabolizing enzymes. No evidence of skin mediated drug metabolism was identified in vivo using the minipig or in vitro using stripped human skin.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tacrolimus, previously known as FK506, is the active ingredient in Prograf. Tacrolimus is a macrolide immunosuppressant produced by Streptomyces tsukubaensis. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression). Prograf is indicated for the prophylaxis of organ rejection in patients receiving allogeneic liver transplants, kidney transplants, heart transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.
Desonide is a topical glucocorticoid which was approved by FDA for the treatment of such conditions as eczema, psoriasis, atopic dermatitis, etc. The exact mechanism of drug action is unknown.
Prednisolone hemisuccinate is a prodrug of a glucocorticoid agonist prednisolone, which is marketed under trade name Prednisolut in Germany and Austria. Prednisolone hemisuccinate is used in emergency medicine to treate shock due to allergic reaction, insect and snake bites, in neurology to treat brain edema and meningitis, in transplantation medicine to reduce risk of organ refection after kidney transplane, in pneumology to treat acute asthma attack, pulmonary edema, in severe or life-threatening situation in rheumatic diseases.
Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases. Caffeine is used by mouth or rectally in combination with painkillers (such as aspirin and acetaminophen) and a chemical called ergotamine for treating migraineheadaches. It is also used with painkillers for simple headaches and preventing and treating headaches after epidural anesthesia. Caffeine creams are applied to the skin to reduce redness and itching in dermatitis. Healthcare providers sometimes give caffeine intravenously (by IV) for headache after epidural anesthesia, breathing problems in newborns, and to increase urine flow. In foods, caffeine is used as an ingredient in soft drinks, energy drinks, and other beverages.
Status:
Investigational
Source:
NCT01420510: Phase 2/Phase 3 Interventional Unknown status Vaginitis
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Adelmidrol is the synthetic derivate of azelaic acid, a naturally occurring saturated dicarboxylic acid, that is found in some whole grains and in trace amounts in the human body. Chemically, ademidrol is the N,N-bis (2-hydroxyethyl) non anediamide and it is an amphiphilic or amphipathic compound, possessing both hydrophilic and hydrophobic properties, that favor its solubility both in aqueous and organic media. Adelmidrol belongs to the aliamide family, a group of fatty acid derivatives with cannabimimetic properties, able to control mast cell (MC) hyperreactivity in several pathophysiological and pathological conditions. Pro-inflammatory NF-κB pathway were markedly reduced by treatment with adelmidrol. The anti-inflammatory effect of adelmidrol appeared to be related on PPAR-gamma activation. Adelmidrol is topically effective for human inflammatory skin disorders and is able to modulate the inflammatory response in human keratinocytes. The combination of hyaluronic acid and adelmidrol improves the signs of osteoarthritis induced by monosodium iodoacetate.
Status:
Investigational
Source:
NCT00626652: Phase 2 Interventional Completed Atrial Fibrillation
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Japan Tobacco developed JTV-519 (known also as K201) as an antiarrhythmic agent. This drug was in Phase II trials for the potential treatment of Atrial Fibrillation, but study was terminated. In experimental myofibrillar overcontraction models, JTV-519 demonstrated greater cardioprotectant effects than propranolol, also, this drug investigated against heart failure, but then these researches have been discontinued. In addition, K201 was in phase II clinical trial for investigation its topical implementation for Atopic Dermatitis. The mechanism of its action is both complex and controversial, known that it is a non-specific blocker of sodium, potassium and calcium channels (multiple-channel blocker). It is believed to stabilize the closed state of the RyR2 (cardiac ryanodine receptor) by increasing its affinity for the FKBP12.6 (12.6 kDa FK506 binding protein), in addition was suggested, that suppression of spontaneous Ca2 release and the activity of RyR2 contributes, at least in part, to the anti-arrhythmic properties of K201.
Status:
Investigational
Source:
INN:cipamfylline
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Cipamfylline is a xanthine, a theophylline analogue, and is a potent and selective inhibitor of phosphodiesterase type 4 (PDE-4). Cipamfylline was tested in patients with a diagnosis of atopic dermatitis and in two human models of acute and chronic irritant contact dermatitis. The outcome of the study revealed that cipamfylline was more effective than vehicle in treating atopic dermatitis, but less effective than a group II steroid, hydrocortisone-17-butyrate both in the treatment of atopic dermatitis and irritant contact dermatitis. The absorption of cipamfylline and the subsequent systemic exposure might be the reason why further clinical studies with higher doses of cipamfylline have not been published.