U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 27 of 27 results

Cyclophosphamide (the generic name for Cytoxan, Neosar, Revimmune), also known as cytophosphane, is a nitrogen mustard alkylating agent, from the oxazophorines group. It is used to treat various types of cancer and some autoimmune disorders. It is a "prodrug"; it is converted in the liver to active forms that have chemotherapeutic activity
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Status:
Investigational
Source:
NCT02668315: Phase 1/Phase 2 Interventional Completed Hematologic Malignancy
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



UM171 is a potent agonist of human hematopoietic stem cell renewal, independently of AhR suppression. UM171 act differently than other small molecule stimulators of hematopoiesis, such as the aryl hydrocarbon receptor (AhR) antagonist StemRegenin 1 (SR1). Addition of UM171 to cultures containing SR1 and cytokines further enhances the ex vivo expansion of normal HSCs, including CD34+ cells.
OTS-167 is a maternal embryonic leucine zipper kinase (MELK) inhibitor which demonstrated antitumor properties in laboratory tests. It is being developed as an anti-cancer drug. The compound has been shown to suppress the growth of breast, lung, pancreatic and prostate cancer cells that express high levels of the MELK protein. OTS167 reached phase II clinical trials in patients with AML, ALL, advanced MDSs, advanced MPNs, or advanced CML and phase I in patients with breast cancer.
Pevonedistat (MLN4924), discovered by Millennium, is a small molecule inhibitor of the NEDD8-Activating Enzyme (NAE), a key component of the protein homeostasis pathway. MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme. The NEDD8-MLN4924 adduct resembles NEDD8 adenylate, the first intermediate in the NAE reaction cycle, but cannot be further utilized in subsequent intraenzyme reactions. The stability of the NEDD8-MLN4924 adduct within the NAE active site blocks enzyme activity, thereby accounting for the potent inhibition of the NEDD8 pathway by MLN4924. This drug is in phase II clinical trial for the treatment acute myeloid leukemia, chronic myelomonocytic leukemia and myelodysplastic syndromes. In addition in phase I for treatment acute lymphoblastic leukemia. The ability of MLN4924 to cross the blood-brain barrier, its low toxicity, and clinical efficacy in other cancers suggests that this drug is an attractive treatment against glioblastomas.
Status:
Possibly Marketed Outside US
Source:
UK NHS:Vindesine sulphate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Vindesine (desacetyl vinblastine amide sulfate) is a synthetic derivative of vinblastine. Vindesine acts by causing the arrest of cells in metaphase mitosis through its inhibition tubulin mitotic funcitoning. Vindesine is an anti-neoplastic drug for intravenous use which can be used alone or in combination with other oncolytic drugs. Information available at present suggests that Eldisine as a single agent may be useful for the treatment of: acute lymphoblastic leukaemia of childhood resistant to other drugs; blastic crises of chronic myeloid leukaemia; malignant melanoma unresponsive to other forms of therapy; advanced carcinoma of the breast, unresponsive to appropriate endocrine surgery and/or hormonal therapy. Adverse effects associated with the use of vindesine include cellulitis and phlebitis, gastrointestinal bleeding, chills, and fever. It may increase the neuropathy associated with Charcot-Marie-Tooth syndrome. Vindesine may interact with mitomycin-C (brand name Mutamycin), causing acute bronchospasm within minutes or hours following administration. Phenytoin (brand name Dilantin) may also interact with vindesine, leading to decreased serum levels of phenytoin.