U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 3913 results

Dextromilnacipran (1R, 2S/F2696) is an enantiomer of milnacipran, a serotonin/norepinephrine (5-HT/NE) reuptake inhibitor. Dextromilnacipran is pharmacologically less active as compared with racemic mixture and levomilnacipran (1S, 2R/F2695).
Iloperidone, also known as Fanapt, Fanapta, and previously known as Zomaril, is an atypical antipsychotic for the treatment of schizophrenia. Iloperidone shows high affinity and maximal receptor occupancy for dopamine D2 receptors in the caudate nucleus and putamen of the brains of schizophrenic patients. The improvement in cognition is attributed to iloperidone's high affinity for α adrenergic receptors. Iloperidone also binds with high affinity to serotonin 5-HT2a and dopamine 3 receptors. Iloperidone binds with moderate affinity to dopamine D4, serotonin 5-HT6 and 5-HT7, and norepinephrine NEα1 receptors. Furthermore, iloperidone binds with weak affinity to serotonin 5-HT1A, dopamine D1, and histamine H1 receptors. Iloperidone is indicated for the treatment of acute schizophrenia.
Asenapine is an antipsychotic drug. The mechanism of action of asenapine, as with other drugs having efficacy in schizophrenia and bipolar disorder, is unknown. Asenapine exhibits high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors, dopamine D2, D3, D4, and D1 receptors, α1 and α2-adrenergic receptors, and histamine H1 receptors, and moderate affinity for H2 receptors. In in vitro assays asenapine acts as an antagonist at these receptors. It has been suggested that the efficacy of asenapine in schizophrenia is mediated through a combination of antagonist activity at D2 and 5-HT2A receptors. Asenapine is approved by the FDA for the acute treatment of schizophrenia in adults and for the acute treatment of manic or mixed episodes associated with bipolar I disorder, with or without psychotic features, in adults.
Tetrabenazine (trade name Xenazine) is a monoamine depleter and used as the symptomatic treatment of chorea associated with Huntington's disease. Tetrabenazine is a reversible human vesicular monoamine transporter type 2 inhibitor (Ki = 100 nM). It acts within the basal ganglia and promotes depletion of monoamine neurotransmitters serotonin, norepinephrine, and dopamine from stores. It also decreases uptake into synaptic vesicles. Dopamine is required for fine motor movement, so the inhibition of its transmission is efficacious for hyperkinetic movement. Tetrabenazine exhibits weak in vitro binding affinity at the dopamine D2 receptor. The most common adverse reactions, which have occurred in at least 10% of subjects in studies and at least 5% greater than in subjects who received placebo, have been: sedation or somnolence, fatigue, insomnia, depression, suicidal thoughts, akathisia, anxiety, and nausea.
Icosapent is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. EPA can be used for lowering elevated triglycerides in those who are hyperglyceridemic. In addition, EPA may play a therapeutic role in patients with cystic fibrosis by reducing disease severity and may play a similar role in type 2 diabetics in slowing the progression of diabetic nephropathy.
Tapentadol is the first US FDA-approved centrally acting analgesic having both μ-opioid receptor agonist and noradrenaline (norepinephrine) reuptake inhibition activity with minimal serotonin reuptake inhibition. Tapentadol is indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate, neuropathic pain associated with diabetic peripheral neuropathy (DPN) severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.
Desvenlafaxine is a dual serotonin and norepinephrine reuptake inhibitor in vitro and in vivo that demonstrates good brain-to-plasma ratios. Desvenlafaxine has demonstrated antidepressant effects in preclinical studies. Pfizer is developing an oral, extended-release formulation of desvenlafaxine for the treatment of major depressive disorder. Desvenlafaxine has been registered and is available on the market for the treatment of major depressive disorder in adults.
Rufinamide is an anti-epileptic drug that is FDA approved for the treatment of lennox-gastaut syndrome (LGS). The principal mechanism of action of rufinamide is modulation of the activity of sodium channels and, in particular, prolongation of the inactive state of the channel. Hormonal contraceptives may be less effective with rufinamide. Patients on valproate should begin at a rufinamide dose lower than 10 mg/kg per day (pediatric patients) or 400 mg per day (adults). Common adverse reactions include headache, dizziness, fatigue, somnolence, and nausea.
Nilotinib (AMN107, trade name Tasigna) is a kinase inhibitor indicated for the treatment of chronic phase and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia (CML) in adult patients resistant to or intolerant to prior therapy that included imatinib. Nilotinib is an inhibitor of the Bcr-Abl kinase. Nilotinib binds to and stabilizes the inactive conformation of the kinase domain of Abl protein. In vitro, nilotinib inhibited Bcr-Abl mediated proliferation of murine leukemic cell lines and human cell lines derived from Ph+ CML patients. Under the conditions of the assays, nilotinib was able to overcome imatinib resistance resulting from Bcr-Abl kinase mutations, in 32 out of 33 mutations tested. In vivo, nilotinib reduced the tumor size in a murine Bcr-Abl xenograft model. Nilotinib inhibited the autophosphorylation of the following kinases at IC50 values as indicated: Bcr-Abl (20-60 nM), PDGFR (69 nM) and c-Kit (210 nM). Nilotinib is currently being trialed in people with Parkinson's disease, as it appears to be able to halt progression of the disease and even improve their symptoms. The drug also has a number of adverse effects typical of anti-cancer drugs: a headache, fatigue, gastrointestinal problems such as nausea, vomiting, diarrhea and constipation, muscle and joint pain, rash and other skin conditions, flu-like symptoms, and reduced blood cell count. Less typical side effects are those of the cardiovascular system, such as hypertension (high blood pressure), various types of arrhythmia, and prolonged QT interval. Interaction of nilotinib with OATP1B1 and OATP1B3 may alter its hepatic disposition and can lead to transporter mediated drug-drug interactions. Nilotinib is an inhibitor of OATP-1B1 transporter but not for OATP-1B3. Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contributes significantly to the pharmacological activity of nilotinib.
Raltegravir (RAL, Isentress, formerly MK-0518) is an antiretroviral drug produced by Merck & Co., used to treat HIV and it is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection in patients 4 weeks of age and older. Raltegravir inhibits the catalytic activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required r viral replication. Inhibition of integrase prevents the covalent insertion, or integration, of unintegrated linear HIV-1 DNA into the host cell genome preventing the formation of the HIV-1 provirus. The provirus is required to direct the production of progeny virus, so inhibiting integration prevents propagation of the viral infection. Raltegravir did not significantly inhibit human phosphoryl transferases including DNA polymerases α, β, and γ. Coadministration with others drugs that are strong inducers of UGT1A1, such as rifampin, may result in reduced plasma concentrations of raltegravir. The most common adverse reactions of moderate to severe intensity (≥2%) are insomnia, headache, dizziness, nausea and fatigue. Severe, potentially life-threatening, and fatal skin reactions have been reported. This include cases of Stevens-Johnson syndrome and toxic epidermal necrolysis. Hypersensitivity reactions have also been reported and were characterized by rash, constitutional findings, and sometimes, organ dysfunction, including hepatic failure. The major mechanism of clearance of raltegravir in humans is UGT1A1-mediated glucuronidation.