U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for vincristine

 
Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis.Vincristine was marketed under the brand name Oncovin, but was discontinued. In 2012 the FDA approved a Liposomal formulation of Vincristine, named MARQIBO KIT.

Showing 1 - 10 of 27 results

Vincristine is a vinca alkaloid antineoplastic agent used as a treatment for various cancers including breast cancer, Hodgkin's disease, Kaposi's sarcoma, and testicular cancer. The vinca alkaloids are structurally similar compounds comprised of 2 multiringed units, vindoline and catharanthine. The vinca alkaloids have become clinically useful since the discovery of their antitumour properties in 1959. Initially, extracts of the periwinkle plant (Catharanthus roseus) were investigated because of putative hypoglycemic properties, but were noted to cause marrow suppression in rats and antileukemic effects in vitro. Vincristine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. Vincristine has some immunosuppressant effect. The vinca alkaloids are considered to be cell cycle phase-specific. The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis.Vincristine was marketed under the brand name Oncovin, but was discontinued. In 2012 the FDA approved a Liposomal formulation of Vincristine, named MARQIBO KIT.
Imatinib (GLEEVEC®) is a tyrosine kinase inhibitor and antineoplastic agent that inhibits the BCR-ABL tyrosine kinase, the constitutive abnormal tyrosine kinase created by the Philadelphia chromosome abnormality in chronic myeloid leukaemia (CML). It inhibits proliferation and induces apoptosis in BCR-ABL positive cell lines as well as fresh leukemic cells from Philadelphia chromosome positive CML. Imatinib (GLEEVEC®) inhibits colony formation in assays using ex vivo peripheral blood and bone marrow samples from CML patients. It is also an inhibitor of the receptor tyrosine kinases for platelet-derived growth factor (PDGF) and stem cell factor (SCF), c-kit, and inhibits PDGF- and SCF-mediated cellular events. In vitro, imatinib (GLEEVEC®) inhibits proliferation and induces apoptosis in gastrointestinal stromal tumor (GIST) cells, which express an activating c-kit mutation.

Class (Stereo):
CHEMICAL (ACHIRAL)



Hydroxyurea is an oral antimetabolite; inhibits ribonucleotide reductase and DNA synthesis. It is used for resistant chronic myeloid leukemia, locally advanced squamous cell carcinomas of the head and neck (excluding lip) in combination with concurrent chemoradiation, and to reduce the frequency of painful crises and the need for blood transfusions in patients with sickle cell anemia with recurrent moderate to severe painful crises. Hydroxyurea, a myelosuppressive agent, is the only effective drug proven to reduce the frequency of painful episodes. It raises the level of HbF and the haemoglobin level. It usually decreases the rate of painful episodes by 50%. It was first tested in sickle cell disease in 1984. It also decreases the rate of ACS episodes and blood transfusions by ~50 % in adults. It was developed as an anticancer drug and has been used to treat myeloproliferative syndromes-leukemia, melanoma, and ovarian cancer. It was approved for use by FDA in adults. Side effects includes neutropenia, bone marrow suppression, elevation of hepatic enzymes, anorexia, nausea, vomiting and infertility.
Vinblastine is a Vinca alkaloid obtained from the Madagascar periwinkle plant. Vinca alkaloids were found out in the 1950's by Canadian scientists, Robert Noble and Charles Beer for the first time. Medicinal applications of this plant lead to the monitoring of these compounds for their hypoglycemic activity, which is of little importance compared to their cytotoxic effects. They have been used to treat diabetes, high blood pressure and the drugs have even been used as disinfectants. Nevertheless, the vinca alkaloids are so important for being cancer fighters. The mechanism of action of vinblastine sulfate has been related to the inhibition of microtubule formation in the mitotic spindle, resulting in an arrest of dividing cells at the metaphase stage. Vinblastine is an antineoplastic agent used to treat Hodgkin's disease, non-Hodgkin's lymphomas, mycosis fungoides, cancer of the testis, Kaposi's sarcoma, Letterer-Siwe disease, as well as other cancers.
Status:
Investigational
Source:
INN:vinleurosine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Vinleurosine is a vinca alkaloid found in species of Catharanthus. This compound was studied as an anticancer agent and participated in clinical trials. However, the drug was more toxic and unpredictable in effect in comparison with vinblastine. Its further development was discontinued.
Status:
Investigational
Source:
INN:vinformide
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Vinformide (also known as N-formylleurosine), an N-formyl analog of leurosine possesses antineoplastic activity. This drug was studied for the treatment of lymphoma, leukemia and Hodkin’s disease. However, studies were discontinued, because vinformide exerted an acute cardiotoxic side effect.
CEP-33779 is a selective JAK2 inhibitor (IC50 of 1.8 nM) developed by Cephalon, Inc for treating autoimmune disease (rheumatoid arthritis, lupus nephritis) and cancer. CEP-33779 orally administrated with 55 mg/kg inhibits phosphorylation of STAT5 in HEL92 tumor extracts from HEL92 xenograft mice. CEP33779 orally administered twice daily at the dose of 55 mg/kg reduces mean paw edema and clinical scores in mice with collagen-antibody-induced arthritis (CAIA) or collagen-induced arthritis (CIA). CEP-33779 orally administered twice daily at the dose of 55 mg/kg totally inhibits paw phospho-STAT3 expression in CAIA or CIA mice, associated with decreased cytokines including IL-12, IFNγ, IL-2, IL-1β, TNFα, and GM-CSF. CEP33779 results in reduced bone degradation, reduced tissue destruction, and reduced osteoarthritis in a dose-dependent manner in CAIA or CIA mice. CEP33779 orally administrated at 100 mg/kg extends survival and reduces splenomegaly/lymphomegaly in MRL/lpr systemic lupus erythematosus mice, thus protect mice from developing glomerulonephritis. CEP-33779 orally administrated at 100 mg/kg decreases several SLE-associated proinflammatory cytokines and reduces levels of a bone resorption biomarker associated with increased osteoclast activity in MRL/lpr systemic lupus erythematosus mice. CEP33779 orally administered twice daily at the dose of 55 mg/kg induces regression of established colorectal tumors, reduces angiogenesis, and reduces proliferation of tumor cells in a mouse model of colitis-induced colorectal cancer. Tumor regression correlated with inhibition of STAT3 and NF-κB (RelA/p65) activation, and decreased the expression of proinflammatory, tumor-promoting cytokines interleukin (IL)-6 and IL-1β
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)