U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Ritlecitinib is an orally administered, covalent small-molecule selective dual inhibitor of JAK3 and the TEC kinase family. In vitro studies showed ritlecitinib covalently binds to JAK3 and is more than 10 000 times more potent against JAK3 than against JAK1, JAK2, and tyrosine kinase. Ritlecitinib also inhibits the five members of the TEC kinase family. Ritlecitinib irreversibly inhibits Janus kinase 3 (JAK3) and TEC kinase family by blocking the adenosine triphosphate (ATP) binding site. In cellular settings, ritlecitinib inhibits cytokine induced STAT phosphorylation mediated by JAK3-dependent receptors. Additionally, ritlecitinib inhibits signaling of immune receptors dependent on TEC kinase family members.The FDA has approved ritlecitinib (LITFULO; Pfizer Inc), a once daily oral treatment, for individuals aged 12 years and older with severe alopecia areata. This makes ritlecitinib, in the 50 mg dosage, the first and only treatment approved by the FDA for adolescents with severe alopecia areata. The approval was based on the results of the ALLEGRO phase 2b/3 trial (NCT03732807), which included 718 individuals who had 50% or more scalp hair loss measured by the Severity of Alopecia Tool. Investigators of the study evaluated the safety and efficacy of ritlecitinib at 118 different sites in 18 different countries. Regulatory applications for LITFULO in alopecia areata have been submitted to countries around the world for review, including China, the European Union, Japan, and the United Kingdom. The European Medicines Agency (EMA) has accepted the Marketing Authorization Application (MAA) for ritlecitinib with a decision anticipated in the third quarter of 2023. LITFULO is also being evaluated for vitiligo, Crohn’s disease, and ulcerative colitis.
Momelotinib (CYT387) is an ATP-competitive small molecule that potently inhibits JAK1/JAK2 kinases. Momelotinib is developing by Gilead Sciences for the oral treatment of pancreatic and non-small cell lung cancers, and myeloproliferative disorders (including myelofibrosis, essential thrombocythaemia and polycythaemia vera).

Class (Stereo):
CHEMICAL (ABSOLUTE)



Pirtobrutinib is a small molecule, noncovalent inhibitor of BTK. BTK is a signaling protein of the B-cell antigen receptor (BCR) and cytokine receptor pathways. In B-cells, BTK signaling results in activation of pathways necessary for B-cell proliferation, trafficking, chemotaxis, and adhesion. Pirtobrutinib binds to wild type BTK and BTK harboring C481 mutations, leading to inhibition of BTK kinase activity. In nonclinical studies, pirtobrutinib inhibited BTK-mediated B-cell CD69 expression and inhibited malignant B-cell proliferation. Pirtobrutinib showed dose-dependent anti-tumor activities in BTK wild type and BTK C481S mutant mouse xenograft models. On January 27, 2023, the Food and Drug Administration (FDA) granted accelerated approval to pirtobrutinib (Jaypirca, Eli Lilly and Company) for relapsed or refractory mantle cell lymphoma (MCL) after at least two lines of systemic therapy, including a BTK inhibitor.
Pacritinib (SB1518), discovered in Singapore at the labs of S*BIO Pte Ltd., is an oral tyrosine kinase inhibitor (TKI) with activity against two important activating mutations: Janus Associated Kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). The JAK family of enzymes is a central component in signal transduction pathways, which are critical to normal blood cell growth and development as well as inflammatory cytokine expression and immune responses. Activating mutations of JAK2 are implicated in certain blood-related cancers, including myeloproliferative neoplasms (MPNs), leukemia and certain solid tumors. FLT3 is a gene commonly found mutated in patients with acute myeloid leukemia (AML). Pacritinib has demonstrated encouraging results in Phase 1 and 2 studies for patients with myelofibrosis and may offer an advantage over other JAK inhibitors through effective treatment of symptoms while having less treatment-emergent thrombocytopenia and anemia than has been seen in currently approved and in-development JAK inhibitors. Pacritinib is acquired by Cell Therapeutics, Inc. (CTI) and Baxter international and could effectively address an unmet medical need for patients living with myelofibrosis who face treatment-emergent thrombocytopenia on marketed JAK inhibitors. Currently Pacritinib is undergoing preregistration for myelofibrosis.
PF-04965842 is an orally administered selective Janus kinase 1 (JAK1) inhibitor. PF-04965842 is currently in clinical trials for the treatment of autoimmune diseases.
Selpercatinib (LOXO-292, ARRY-192) is a potent and specific RET (c-RET) inhibitor that was granted accelerated FDA approval on May 8, 2020, for specific RET-driven cancer indications. It is currently marketed under the brand name RETEVMO™ by Loxo Oncology Inc.
Pralsetinib (GAVRETO™, Blueprint Medicines Corporation) is an orally-administered, next-generation, small-molecule selective rearranged during transfection (RET) inhibitor being developed for the treatment of various solid tumours. RET is a well described proto-oncogene present in multiple cancers including non-small cell lung cancer (NSCLC), papillary thyroid cancer, and medullary thyroid carcinoma. Pralsetinib is a kinase inhibitor of wild-type RET and oncogenic RET fusions (CCDC6-RET) and mutations (RET V804L, RET V804M and RET M918T) with half maximal inhibitory concentrations (IC50s) less than 0.5 nM. In purified enzyme assays, pralsetinib inhibited DDR1, TRKC, FLT3, JAK1-2, TRKA, VEGFR2, PDGFRb, and FGFR1 at higher concentrations that were still clinically achievable at Cmax. In cellular assays, pralsetinib inhibited RET at approximately 14-, 40-, and 12-fold lower concentrations than VEGFR2, FGFR2, and JAK2, respectively. Pralsetinib is approved for the treatment of RET fusion-positive metastatic NSCLC. In the pivotal phase I/II ARROW trial, pralsetinib demonstrated rapid and durable anti-tumour activity in patients with advanced RET fusion-positive NSCLC who were previously treated with platinum-based chemotherapy or were treatment-naïve. Pralsetinib also showed clinical activity against intracranial metastases arising from NSCLC. Pralsetinib had a manageable tolerability profile, with the most common grade 3 treatment-related adverse events being neutropenia, hypertension, anaemia and decreased white blood cell count.
TUCATINIB (ONT-380 or ARRY-380) is an orally active, reversible and selective small-molecule HER2 inhibitor invented by Array and licensed to Cascadian Therapeutics (previously named Oncothyreon) for development, manufacturing and commercialization. HER2, a growth factor receptor that is over-expressed in multiple cancers, including breast, ovarian, and stomach cancer. HER2 mediates cell growth, differentiation and survival, and tumors that overexpress HER2 are more aggressive and historically have been associated with poorer overall survival compared with HER2-negative cancers. ONT-380 is highly active as a single agent and in combination with both chemotherapy and Herceptin® (trastuzumab) in xenograft models of HER2+ breast cancer, including models of CNS metastases that were refractory to Tykerb® (lapatinib) or neratinib treatment. In a Phase 1 single agent clinical study, ONT-380 administered orally twice a day was well tolerated and demonstrated anti-tumor activity in heavily pre-treated HER2+ breast cancer patients with metastatic disease. Based on the strength of these preclinical and clinical trials, ONT-380 is advancing in one Phase 2 and three Phase 1b combination trials in patients with metastatic breast cancer. A second study reported the CNS activity of ONT-380 in combination with either T-DM1 or trastuzumab or capecitabine. Patients with brain metastases assessable for response were included in the combined analysis. Responses and clinical benefit in the CNS were reported with the three combinations tested, supporting future development of the drug for this particular indication.