{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for beta root_references_url in Reference URL (approximate match)
Status:
US Approved Rx
(2006)
Source:
ANDA076871
(2006)
Source URL:
First approved in 1987
Source:
NOVANTRONE by EMD SERONO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Mitoxantrone (NOVANTRONE) is a synthetic antineoplastic
anthracenedione. Mitoxantrone, a DNA-reactive agent that intercalates into deoxyribonucleic acid (DNA)
through hydrogen bonding, causes crosslinks and strand breaks. Mitoxantrone also interferes with ribonucleic acid (RNA) and is a potent inhibitor of topoisomerase II, an
enzyme responsible for uncoiling and repairing damaged DNA. It has a cytocidal effect
on both proliferating and nonproliferating cultured human cells, suggesting lack of cell
cycle phase specificity.
Mitoxantrone has been shown in vitro to inhibit B cell, T cell, and macrophage
proliferation and impair antigen pre sentation, as well as the secretion of interferon
gamma, TNFα, and IL-2. NOVANTRONE is indicated for reducing neurologic disability and/or the frequency of
clinical relapses in patients with secondary (chronic) progressive, progressive relapsing,
or worsening relapsing-remitting multiple sclerosis (i.e., patients whose neurologic status
is significantly abnormal between relapses). NOVANTRONE in combination with corticosteroids is indicated as initial chemotherapy
for the treatment of patients with pain related to advanced hormone-refractory prostate
cancer.
NOVANTRONE in combination with other approved drug(s) is indicated in the initial
therapy of acute nonlymphocytic leukemia (ANLL) in adults. This category includes
myelogenous, promyelocytic, monocytic, and erythroid acute leukemias.
Status:
US Approved Rx
(1995)
Source:
ANDA074311
(1995)
Source URL:
First approved in 1980
Source:
NDA018299
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Trifluridine (also called trifluorothymidine or TFT) is an anti-herpesvirus antiviral drug, used primarily on the eye. It was sold under the trade name, Viroptic, by Glaxo Wellcome, now merged into GlaxoSmithKline. It is a nucleoside analogue, a modified form of deoxyuridine, similar enough to be incorporated into viral DNA replication, but the -CF3 group added to the uracil component blocks base pairing, thus interfering with DNA replication. It is a component of the experimental anti-cancer drug TAS-102. Trifluridine is a fluorinated pyrimidine nucleoside with in vitro and in vivo activity against herpes simplex virus, types 1 and 2 and vaccinia virus. Some strains of adenovirus are also inhibited in vitro. VIROPTIC is also effective in the treatment of epithelial keratitis that has not responded clinically to the topical administration of idoxuridine or when ocular toxicity or hypersensitivity to idoxuridine has occurred. In a smaller number of patients found to be resistant to topical vidarabine, VIROPTIC was also effective. The mechanism of action of trifluridine has not been fully determined, but appears to involve the inhibition of viral replication. Trifluridine does this by incorporating into viral DNA during replication, which leads to the formation of defective proteins and an increased mutation rate.
Status:
Investigational
Source:
NCT03174795: Phase 1 Interventional Completed Urinary Tract Infections
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Nacubactam (FPI-1459) was developed as an antibacterial drug. Nacubactam successfully has completed phase I clinical trials for the treatment of serious gram-negative bacterial infections. The drug is currently being developed for the treatment of complicated urinary tract infection, hospital-acquired bacterial pneumonia, ventilator-associated bacterial pneumonia, and complicated intra-abdominal infections. FPI-1459 works through several mechanisms of action, inhibiting a number of beta-lactamase enzymes as well as certain bacterial cell wall enzymes. In January 2019, FPI-1459 received Fast Track and Qualified Infectious Disease Product designations from the U.S. Food and Drug Administration (FDA).
Status:
Investigational
Source:
NCT04462666: Phase 2 Interventional Unknown status Gouty Arthritis
(2020)
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Status:
Designated
Source:
EU-Orphan Drug:EU/3/10/816(POSITIVE)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
7β-hydroxycholesteryl-3-oleate has been shown to inhibit astrogliosis and intracranial glioblastoma growth. Local administration of 7β-hydroxycholesteryl-3-oleate inhibits growth of experimental rat C6 glioblastoma. These data suggest that 7β-hydroxycholesteryl-3-oleate might be useful for local glioblastoma chemotherapy. 7β-hydroxycholesteryl-3-oleate is a potent inhibitor of the endogenous cholesterol biosynthesis in brain showing a correlation between cholesterogenesis and reactive astrocyte proliferation. 7β-hydroxycholesteryl-3-oleate can reduce the astrocytic reaction following spinal cord injury, promoting the serotonergic reinnervation of a denervated territory. On 17 December 2010, orphan designation (EU/3/10/816) was granted by the European Commission to Intsel Chimos SA, France, for 7-beta-hydroxy cholesteryl-3-beta-oleate for the treatment of glioma. The substance is going to be injected directly into the brain tumour contained within liposomes, which are expected to carry the medicine into the glioma cells.