{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for uridine in Any Name (approximate match)
Status:
US Approved Rx
(2020)
Source:
NDA212576
(2020)
Source URL:
First approved in 2020
Source:
NDA212576
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cedazuridine is a specific cytidine deaminase (CDA) inhibitor that was approved in combination with decitabine for the treatment of variable forms of myelodysplastic syndrome (MDS). It is known that decitabine is rapidly metabolized by CDA prior to reaching systemic circulation when administered orally. Thus, cedazuridine by inhibition of CDA increases systemic exposure of decitabine.
Status:
US Approved Rx
(2015)
Source:
NDA208169
(2015)
Source URL:
First approved in 2015
Source:
NDA208169
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Uridine triacetate (formally PN401) is an acetylated prodrug of uridine. Following oral administration, uridine triacetate is deacetylated by nonspecific esterases present throughout the body, yielding uridine in the circulation. Uridine triacetate under VISTOGARD trade name is a uridine replacement agent approved for the emergency treatment of fluorouracil or capecitabine overdose (regardless of the presence of symptoms) or early-onset severe or life-threatening cardiac or central nervous system (CNS) toxicity and/or early-onset unusually severe adverse reactions (eg, gastrointestinal [GI] toxicity and/or neutropenia) within 96 hours following the end of fluorouracil or capecitabine administration in adult and pediatric patients. Uridine competitively inhibits cell damage and cell death caused by fluorouracil. Fluorouracil is a cytotoxic antimetabolite that interferes with nucleic acid metabolism in normal and cancer cells. Cells anabolize fluorouracil to the cytotoxic intermediates 5-fluoro-2’-deoxyuridine-5’- monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP). FdUMP inhibits thymidylate synthase, blocking thymidine synthesis. Thymidine is required for DNA replication and repair. Uridine is not found in DNA. The second source of fluorouracil cytotoxicity is the incorporation of its metabolite, FUTP, into RNA. This incorporation of FUTP into RNA is proportional to systemic fluorouracil exposure. Excess circulating uridine derived from VISTOGARD is converted into uridine triphosphate (UTP), which competes with FUTP for incorporation into RNA. Uridine triacetate is also approved for the treatment of hereditary orotic aciduria under XURIDEN trade name. Uridine triacetate provides uridine in the systemic circulation of patients with hereditary orotic aciduria who cannot synthesize adequate quantities of uridine due to a genetic defect in uridine nucleotide synthesis.
Status:
US Approved Rx
(1995)
Source:
ANDA074311
(1995)
Source URL:
First approved in 1980
Source:
NDA018299
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Trifluridine (also called trifluorothymidine or TFT) is an anti-herpesvirus antiviral drug, used primarily on the eye. It was sold under the trade name, Viroptic, by Glaxo Wellcome, now merged into GlaxoSmithKline. It is a nucleoside analogue, a modified form of deoxyuridine, similar enough to be incorporated into viral DNA replication, but the -CF3 group added to the uracil component blocks base pairing, thus interfering with DNA replication. It is a component of the experimental anti-cancer drug TAS-102. Trifluridine is a fluorinated pyrimidine nucleoside with in vitro and in vivo activity against herpes simplex virus, types 1 and 2 and vaccinia virus. Some strains of adenovirus are also inhibited in vitro. VIROPTIC is also effective in the treatment of epithelial keratitis that has not responded clinically to the topical administration of idoxuridine or when ocular toxicity or hypersensitivity to idoxuridine has occurred. In a smaller number of patients found to be resistant to topical vidarabine, VIROPTIC was also effective. The mechanism of action of trifluridine has not been fully determined, but appears to involve the inhibition of viral replication. Trifluridine does this by incorporating into viral DNA during replication, which leads to the formation of defective proteins and an increased mutation rate.
Status:
US Approved Rx
(2001)
Source:
ANDA075837
(2001)
Source URL:
First approved in 1970
Source:
FUDR by HOSPIRA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Floxuridine is a pyrimidine analog that acts as an inhibitor of the S-phase of cell division. This selectively kills rapidly dividing cells. Floxuridine is an anti-metabolite. Anti-metabolites masquerade as pyramidine-like molecules which prevents normal pyrimidines from being incorporated into DNA during the S phase of the cell cycle. Flurouracil (the end-product of catabolism of floxuridine) blocks an enzyme which converts cytosine nucleosides into the deoxy derivative. In addition, DNA synthesis is further inhibited because fluoruracil blocks the incorporation of the thymdine nucleotide into the DNA strand. Floxuridine is used for palliative management of gastrointestinal adenocarcinoma metastatic to the liver, when given by continuous regional intra-arterial infusion in carefully selected patients who are considered incurable by surgery or other means. Also for the palliative management of liver cancer (usually administered by hepatic intra-arterial infusion).Floxuridine first gained FDA approval in December 1970 under the brand name FUDR. The drug was initially marketed by Roche, which also did a lot of the initial work on 5-fluorouracil. The National Cancer Institute was an early developer of the drug. Roche sold its FUDR product line in 2001 to F H Faulding, which became Mayne Pharma.
Status:
Investigational
Source:
INN:tirfipiravir [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT03428958: Phase 1/Phase 2 Interventional Completed Colorectal Cancer
(2018)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Investigational
Source:
NCT02073838: Phase 2 Human clinical trial Completed Leukemia, Myeloid, Acute/genetics/metabolism
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Status:
Investigational
Source:
INN:fosalvudine tidoxil [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Heidelberg Pharma Research developed fosalvudine tidoxil, a prodrug derived from the nucleoside reverse transcriptase inhibitor alovudine, for the treatment of HIV infections. This drug had reached phase II clinical trials before its development was discontinued.
Status:
Investigational
Source:
NCT00002338: Phase 1 Interventional Completed HIV Infections
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Raluridine (also know as 935U83) is a nucleoside analog reverse transcriptase inhibitor patented by Wellcome Foundation Ltd. for the treatment of HIV infection. Raluridine has demonstrated selective anti-human immunodeficiency virus (HIV) activity in vitro and favorable safety profiles in monkeys and mice. When tested in phytohemagglutinin-stimulated normal human peripheral blood lymphocytes against fresh clinical isolates of HIV type 1 Raluridine inhibited virus growth with an average 50% inhibitory concentration of 1.8 microM. Importantly, Raluridine retained activity against HIV strains that were resistant to zidovudine, 2',3'-dideoxyinosine, or 2',3'-dideoxycytosine. The anabolic profile of Raluridine was similar to that of zidovudine, and Raluridine triphosphate was a potent inhibitor of HIV-1 reverse transcriptase. In clinical trials systemic exposure to Raluridine at levels exceeding its average in vitro antiretroviral 50%, inhibitory concentration (approximately 1.8 microM) can be achieved after a single oral dose.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Navuridine (AzddU) is a nucleoside analogue which demonstrated significant anti-HIV activity and low toxicity in preclinical studies. The drug was originally developed by University of Georgia. Navuridine is a dideoxyuridine inhibitor of HIV reverse transcriptase that is related to zidovudine. Navuridine exhibits a relatively short half-life and incomplete oral bioavailability and has not been developed into a clinical drug.