{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for sulfadiazine in Any Name (approximate match)
Showing 1 - 9 of 9 results
Status:
US Approved Rx
(1982)
Source:
NDA018578
(1982)
Source URL:
First approved in 1973
Source:
NDA017381
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
Investigational
Source:
USAN:SULFANILATE ZINC [USAN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sodium sulfanilate is a salt of sulphanilic acid and has been used to monitor the degree of renal dysfunction in dogs.
Status:
US Previously Marketed
Source:
SULFAGUANIDINE by LEDERLE
(1961)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ACHIRAL)
Sulfaguanidine is used to treat the gastrointestinal infections particularly bacillary dysentery. Sulfaguanidine is a sulfonamide antibiotic that blocks the synthesis of dihydrofolic acid by inhibiting the enzyme dihydropteroate synthase in bacteria. Sulfonamides are active against Gram positive bacteria and Gram negative bacteria.
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Approved Rx
(1994)
Source:
ANDA040091
(1994)
Source URL:
First approved in 1941
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Previously Marketed
Source:
AVC by MYLAN SPECIALITY LP
(1965)
Source URL:
First marketed in 1936
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfanilamide is an anibiotic drug, which has been used for decades for the treatment of vulvovaginal candidiasis. The drug blocks folic acid synthesis in bacterias by inhibitin the enzyme dihydropteroate synthase.