{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for pyridoxine in Code Comments (approximate match)
Showing 1 - 5 of 5 results
Status:
US Approved Rx
(1973)
Source:
NDA017377
(1973)
Source URL:
First approved in 1973
Source:
NDA017377
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme
Status:
US Approved Rx
(2019)
Source:
ANDA212231
(2019)
Source URL:
First approved in 1961
Source:
GANTANOL by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sulfamethoxazole is a synthetic antibacterial drug,which is used in combination with trimethoprim (Bactrim, Septra) for the treatment or prevention of infections that are proven or strongly suspected to be caused by bacteria. Sulfamethoxazole acts by inhibiting folic acid synthesis via enzyme called dihydropteroate synthase.
Status:
US Approved Rx
(2014)
Source:
ANDA202610
(2014)
Source URL:
First approved in 1952
Source:
NYDRAZID by SANDOZ
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. Isoniazid is recommended for all forms of tuberculosis in which organisms are susceptible. Isoniazid is a prodrug and must be activated by bacterial catalase. Isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. The most frequent adverse reactions to isoniazid are those affecting the nervous system and the liver.
Status:
US Approved Rx
(2016)
Source:
NDA209661
(2016)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.
Status:
US Approved Rx
(2016)
Source:
NDA209661
(2016)
Source URL:
First approved in 1947
Source:
BEROCCA PN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pyridoxine is the 4-methanol form of vitamin B6 and is converted to pyridoxal 5-phosphate in the body. Vitamin B6 (pyridoxine) is a water-soluble vitamin used in the prophylaxis and treatment of vitamin B6 deficiency and peripheral neuropathy in those receiving isoniazid (isonicotinic acid hydrazide, INH). Vitamin B6 has been found to lower systolic and diastolic blood pressure in a small group of subjects with essential hypertension. Hypertension is another risk factor for atherosclerosis and coronary heart disease. Another study showed pyridoxine hydrochloride to inhibit ADP- or epinephrine-induced platelet aggregation and to lower total cholesterol levels and increase HDL-cholesterol levels, again in a small group of subjects. Vitamin B6, in the form of pyridoxal 5'-phosphate, was found to protect vascular endothelial cells in culture from injury by activated platelets. Endothelial injury and dysfunction are critical initiating events in the pathogenesis of atherosclerosis. Human studies have demonstrated that vitamin B6 deficiency affects cellular and humoral responses of the immune system. Vitamin B6 deficiency results in altered lymphocyte differentiation and maturation, reduced delayed-type hypersensitivity (DTH) responses, impaired antibody production, decreased lymphocyte proliferation and decreased interleukin (IL)-2 production, among other immunologic activities. Used for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy.