{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
epinephrine
to a specific field?
Here are the exact (name or code) matches for epinephrine
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved OTC
Source:
21 CFR 341.16(g) cough/cold:bronchodilator racepinephrine hydrochloride
Source URL:
First approved in 2000
Source:
M012
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Racepinephrine or racemic epinephrine is a mixture of levo and dextro isomers of epinephrine act as a nonselective agonist at adrenergic receptors. It is a bronchodilator used in the temporary relief of mild symptoms of intermittent asthma including wheezing, shortness of breath. Inhaled racepinephrine became available in September 2012 as a nonprescription treatment for bronchospasm based on a 1986 US Food and Drug Administration rule. Besides, racemic epinephrine relieves respiratory distress in hospitalized infants with bronchiolitis and is safe but does not abbreviate hospital stay. Morbidity associated with bronchiolitis as identified by parents persists for at least one week after hospital discharge in most infants.
Status:
US Approved OTC
Source:
21 CFR 341.16(g) cough/cold:bronchodilator racepinephrine hydrochloride
Source URL:
First approved in 2000
Source:
M012
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Racepinephrine or racemic epinephrine is a mixture of levo and dextro isomers of epinephrine act as a nonselective agonist at adrenergic receptors. It is a bronchodilator used in the temporary relief of mild symptoms of intermittent asthma including wheezing, shortness of breath. Inhaled racepinephrine became available in September 2012 as a nonprescription treatment for bronchospasm based on a 1986 US Food and Drug Administration rule. Besides, racemic epinephrine relieves respiratory distress in hospitalized infants with bronchiolitis and is safe but does not abbreviate hospital stay. Morbidity associated with bronchiolitis as identified by parents persists for at least one week after hospital discharge in most infants.
Status:
US Approved OTC
Source:
21 CFR 341.16(d) cough/cold:bronchodilator epinephrine
Source URL:
First marketed in 1901
Source:
Adrenalin by Parke Davis
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Epinephrine is a sympathomimetic catecholamine. It acts as a naturally occurring agonist at both alpha and beta-adrenergic receptors. Three pharmacologic types have been identified: alpha 1-, alpha 2-, and beta-adrenergic receptors. Each of these has three subtypes, characterized by both structural and functional differences. The alpha 2 and beta receptors are coupled negatively and positively, respectively, to adenylyl cyclase via Gi or Gs regulatory proteins, and the alpha 1 receptors modulate phospholipase C via the Go protein. Subtype expression is regulated at the level of the gene, the mRNA, and the protein through various transcriptional and postsynthetic mechanisms. Through its action on alpha-adrenergic receptors, epinephrine lessens the vasodilation and increased vascular permeability that occurs during anaphylaxis, which can lead to loss of intravascular fluid volume and hypotension. Through its action on beta-adrenergic receptors, epinephrine causes bronchial smooth muscle relaxation and helps alleviate bronchospasm, wheezing and dyspnea that may occur during anaphylaxis. Epinephrine also alleviates pruritus, urticaria, and angioedema and may relieve gastrointestinal and genitourinary symptoms associated with anaphylaxis because of its relaxer effects on the smooth muscle of the stomach, intestine, uterus and urinary bladder.
Epinephrine increases glycogenolysis, reduces glucose up take by tissues, and inhibits insulin release in the pancreas, resulting in hyperglycemia and increased blood lactic acid.
Status:
US Approved Rx
(2023)
Source:
ANDA217271
(2023)
Source URL:
First approved in 1996
Source:
PROAMATINE by TAKEDA PHARMS USA
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Midodrine is a prodrug, i.e., the therapeutic effect of orally administered midodrine is due to the major metabolite desglymidodrine formed by deglycination of midodrine. Desglymidodrine diffuses poorly across the blood-brain barrier, and is therefore not associated with effects on the central nervous system. Administration of midodrine results in a rise in standing, sitting, and supine systolic and diastolic blood pressure in patients with orthostatic hypotension of various etiologies. Standing systolic blood pressure is elevated by approximately 15 to 30 mmHg at 1 hour after a 10-mg dose of midodrine, with some effect persisting for 2 to 3 hours. Midodrine has no clinically significant effect on standing or supine pulse rates in patients with autonomic failure. Midodrine forms an active metabolite, desglymidodrine, that is an alpha1-agonist, and exerts its actions via activation of the alpha-adrenergic receptors of the arteriolar and venous vasculature, producing an increase in vascular tone and elevation of blood pressure. Desglymidodrine does not stimulate cardiac beta-adrenergic receptors. Midodrine is used for the treatment of symptomatic orthostatic hypotension (OH). Midodrine is marketed under the brand names Amatine, ProAmatine, Gutron.
Status:
US Approved Rx
(2022)
Source:
ANDA091442
(2022)
Source URL:
First approved in 1996
Source:
ALPHAGAN by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Brimonidine reduces the amount of fluid in the eye, which decreases pressure inside the eye. Brimonidine ophthalmic (for the eyes) is used to treat open-angle glaucoma or ocular hypertension (high pressure inside the eye). Brimonidine is an alpha adrenergic receptor agonist (primarily alpha-2). Fluorophotometric studies in animals and humans suggest that Brimonidine has a dual mechanism of action by reducing aqueous humor production and increasing uveoscleral outflow. Adverse reactions occurring in approximately 1020% of the subjects receiving brimonidine ophthalmic solution (0.1-0.2%) included: allergic conjunctivitis, conjunctival hyperemia, and eye pruritus. Because Brimonidine may reduce blood pressure, caution in using drugs such as antihypertensives and/or cardiac glycosides with Brimonidine is advised.
Status:
US Approved Rx
(2009)
Source:
ANDA078202
(2009)
Source URL:
First approved in 1994
Source:
RHINOCORT by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Status:
US Approved Rx
(1987)
Source:
NDA019779
(1987)
Source URL:
First approved in 1987
Source:
NDA019779
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Apraclonidine (IOPIDINE) is an α2-adrenergic receptor agonist and a weak α1-adrenergic receptor agonist. It is used for the prevention and treatment of postsurgical intraocular pressure elevation. The following adverse events, occurring in less than 2% of patients, were reported in association with the use of IOPIDINE Ophthalmic Solution in laser surgery: ocular injection, upper lid elevation, irregular heart rate, nasal decongestion, ocular inflammation, conjunctival blanching, and mydriasis. Interactions with other agents have not been investigated.
Status:
US Approved Rx
(1993)
Source:
NDA020201
(1993)
Source URL:
First approved in 1978
Source:
DOBUTREX by LILLY
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Dobutamine is a sympathomimetic drug used in the treatment of heart failure and cardiogenic shock. Dobutamine hydrochloride is a direct-acting inotropic agent whose primary activity results from stimulation of the ß-receptors of the heart while producing comparatively mild chronotropic, hypertensive, arrhythmogenic, and vasodilative effects. It does not
cause the release of endogenous norepinephrine, as does dopamine. Dobutamine directly stimulates beta-1 receptors of the heart to increase myocardial contractility and stroke volume, resulting in increased cardiac output. Dobutamine Injection, USP is indicated when parenteral therapy is necessary for inotropic support in the short-term treatment of adults with cardiac decompensation due to depressed contractility resulting either from organic heart disease or from cardiac surgical procedures.
Status:
US Approved Rx
(1978)
Source:
NDA018057
(1978)
Source URL:
First approved in 1978
Source:
NDA018057
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Platinous chloride is used as a catalyst in organic synthesis. The salt is insoluble in water.
Status:
US Approved Rx
(2010)
Source:
ANDA091396
(2010)
Source URL:
First approved in 1955
Source:
DELTA-CORTEF by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Prednisolone hemisuccinate is a prodrug of a glucocorticoid agonist prednisolone, which is marketed under trade name Prednisolut in Germany and Austria. Prednisolone hemisuccinate is used in emergency medicine to treate shock due to allergic reaction, insect and snake bites, in neurology to treat brain edema and meningitis, in transplantation medicine to reduce risk of organ refection after kidney transplane, in pneumology to treat acute asthma attack, pulmonary edema, in severe or life-threatening situation in rheumatic diseases.
Status:
US Approved Rx
(2021)
Source:
ANDA214543
(2021)
Source URL:
First approved in 1950
Source:
NDA007513
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.