U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for benzoyl peroxide

 
Status:
US Approved OTC
Source:
21 CFR 333.310(a) acne benzoyl peroxide
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Benzoyl peroxide (BPO) is an organic compound in the peroxide family. It consists of two benzoyl groups bridged by a peroxide link. It is one of the most important organic peroxides in terms of applications and the scale of its production. Benzoyl peroxide is used as an acne treatment, for bleaching hair and teeth. Adverse reactions are: dryness and urticarial reaction, contact dermatitis, application site burning, application site irritation and skin irritation.
Status:
US Approved OTC
Source:
21 CFR 333.310(a) acne benzoyl peroxide
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Benzoyl peroxide (BPO) is an organic compound in the peroxide family. It consists of two benzoyl groups bridged by a peroxide link. It is one of the most important organic peroxides in terms of applications and the scale of its production. Benzoyl peroxide is used as an acne treatment, for bleaching hair and teeth. Adverse reactions are: dryness and urticarial reaction, contact dermatitis, application site burning, application site irritation and skin irritation.

Class (Stereo):
CHEMICAL (ABSOLUTE)

BioLineRx Ltd has developed BL-8040, a short peptide for the treatment of solid tumors, acute myeloid leukemia, or AML, and stem-cell mobilization for bone-marrow transplantation. BL-8040 acts as CXCR4 antagonist. CXCR4 is a chemokine receptor that is directly involved in tumor progression, angiogenesis, metastasis, and cell survival. In February 2019 US Food and Drug Administration (FDA) has granted Orphan Drug Designation to BL-8040, for the treatment of pancreatic cancer. Previously FDA had granted Orphan Drug Designation for the treatment of acute myeloid leukemia and stem-cell mobilization.

Class (Stereo):
CHEMICAL (ABSOLUTE)



OTL-38 (OTL-0038, Pafolacianine), a fluorescent-labelled folate receptor-α (FRα) targeted imaging agent that accumulates in vivo in tumor cells expressing FR. In 2014, the OTL-38 molecule was granted orphan drug status which can be given to the maker of a drug that treats rare conditions or diseases and offers protection from competition for a period of time. OTL-38 under the brand name Cytalux was approved by the U.S. Food and Drug Administration (FDA) on 29 November 2021, as an additional approach that can be used to identify malignant lesions and to ensure the total resection of the tumors in ovarian cancer patients. Cytalux is a fluorescent drug that targets folate receptor which may be overexpressed in ovarian cancer. Pafolacianine binds to FR-expressing cancer cells with ~1 nM affinity, internalizes via receptor mediated endocytosis, and concentrates in FR-positive cancer tissues. Pafolacianine absorbs light in the near-infrared region within a range of 760 nm to 785 nm with peak absorption of 776 nm and emits fluorescence within a range of 790 nm to 815 nm with a peak emission of 796 nm.
Fostemsavir (BMS-663068) is an investigational attachment inhibitor with a unique mechanism of action. It is a prodrug of temsavir, which binds to HIV envelope glycoprotein 120 (gp120), thereby preventing viral attachment to the host CD4 cell surface receptor. In the absence of effective binding of HIV gp120 with the host CD4 receptor, HIV does not enter the host cell. Because fostemsavir has a novel mechanism of action, the drug should have full activity against HIV strains that have developed resistance to other classes of antiretroviral medications. In a phase 2b study of treatment-experienced individuals, fostemsavir appeared to be well tolerated. Phase 3 studies are ongoing.
Ozanimod (previously known as RPC-1063) is a selective immune-inflammatory modulator of the G protein-coupled receptors sphingosine 1-phosphate 1 and 5, which are part of the sphingosine 1-phosphate (S1P) receptor family. Treatment with S1P receptor modulators interferes with S1P signaling and blocks the response of lymphocytes (a type of white blood cell) to exit signals from the lymph nodes, sequestering them within the nodes. The result is a downward modulation of circulating lymphocytes and anti-inflammatory activity by inhibiting cell migration to sites of inflammation. Ozanimod is currently in phase III clinical trials for the treatment of relapsing multiple sclerosis (RMS) and ulcerative colitis, and also in phase II clinical trials to determine whether it is effective in the treatment of Crohn's disease.
Revefenacin (trade name Yupelri is a long-acting muscarinic antagonist developed by Mylan Ireland ltd for the treatment of chronic obstructive pulmonary disease (COPD). It has similar affinity to the subtypes of muscarinic receptors M1 to M5. In the airways, it exhibits pharmacological effects through inhibition of M3 receptor at the smooth muscle leading to bronchodilation. The competitive and reversible nature of antagonism was shown with human and animal origin receptors and isolated organ preparations. In preclinical in vitro as well as in vivo models, prevention of methacholine- and acetylcholine-induced bronchoconstrictive effects was dose-dependent and lasted longer than 24 hours.
Venetoclax (trade name Venclexta, also known as ABT-199) is a selective and orally bioavailable small-molecule inhibitor of BCL-2, an antiapoptotic protein. BCL-2 and its related proteins BCL-XL and MCL-1 bind to and sequester pro-apoptotic signals in the cell, causing a down-regulation of apoptosis. As an oncogene and an important regulator of apoptosis, BCL-2 overexpression therefore results in increased tumor cell survival and resistance to chemotherapy. FDA approved Venetoclax in April 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion, as detected by an FDA approved test, who have received at least one prior therapy. Also this drug in phase 3 clinical trial in combination therapy for the treatment patients with refractory myeloma and Acute Myeloid Leukemia. Common side effects include neutropenia, nausea, anemia, diarrhea, upper respiratory tract infection. Major side effects include tumor lysis syndrome and severe neutropenia.
Cobimetinib is an orally active, potent and highly selective small molecule inhibiting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), and central components of the RAS/RAF/MEK/ERK signal transduction pathway. It has been approved in Switzerland and the US, in combination with vemurafenib for the treatment of patients with unresectable or metastatic BRAF V600 mutation-positive melanoma. Preclinical studies have demonstrated that Cobimetinib is effective in inhibiting the growth of tumor cells bearing a BRAF mutation, which has been found to be associated with many tumor types. A threonine-tyrosine kinase and a key component of the RAS/RAF/MEK/ERK signalling pathway that is frequently activated in human tumors, MEK1 is required for the transmission of growth-promoting signals from numerous receptor tyrosine kinases. Cobimetinib is used in combination with vemurafenib because the clinical benefit of a BRAF inhibitor is limited by intrinsic and acquired resistance. Reactivation of the MAPK pathway is a major contributor to treatment failure in BRAF-mutant melanomas, approximately ~80% of melanoma tumors becomes BRAF-inhibitor resistant due to reactivation of MAPK signalling. BRAF-inhibitor resistant tumor cells are sensitive to MEK inhibition, therefore cobimetinib and vemurafenib will result in dual inhibition of BRAF and its downstream target, MEK. Cobimetinib specifically binds to and inhibits the catalytic activity of MEK1, resulting in inhibition of extracellular signal-related kinase 2 (ERK2) phosphorylation and activation and decreased tumor cell proliferation. Cobimetinib and vemurafenib target two different kinases in the RAS/RAF/MEK/ERK pathway. Cobimetinib is used for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation. Cobimetinib is used in combination with vemurafenib, a BRAF inhibitor. Cobimetinib is marketed under the trade name Cotellic.
Suvorexant is a selective dual antagonist of orexin receptors OX1R and OX2R. It has been approved for the treatment of insomnia. The mechanism by which suvorexant exerts its therapeutic effect in insomnia is presumed to be through antagonism of orexin receptors. The orexin neuropeptide signaling system is a central promoter of wakefulness. Blocking the binding of wake-promoting neuropeptides orexin A and orexin B to receptors OX1R and OX2R is thought to suppress wake drive.