U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Here are the exact (name or code) matches for atorvastatin

 

Class (Stereo):
CHEMICAL (ABSOLUTE)



Atorvastatin calcium (LIPITOR®) is a pyrrole and heptanoic acid derivative, a synthetic lipid-lowering agent. Atorvastatin is a selective, competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin is used to reduce serum levels of LDL(low-density lipoprotein)-cholesterol; apolipoprotein B; and triglycerides and to increase serum levels of HDL(high-density lipoprotein)-cholesterol in the treatment of hyperlipidemias and prevention of cardiovascular disease in patients with multiple risk factors.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

Ent-atorvastatin (3S,5S-atorvastatin) is impurity and inactive enantiomer of lipid-lowering agent Atorvastatin.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Atorvastatin calcium (LIPITOR®) is a pyrrole and heptanoic acid derivative, a synthetic lipid-lowering agent. Atorvastatin is a selective, competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in cholesterol biosynthesis. Atorvastatin is used to reduce serum levels of LDL(low-density lipoprotein)-cholesterol; apolipoprotein B; and triglycerides and to increase serum levels of HDL(high-density lipoprotein)-cholesterol in the treatment of hyperlipidemias and prevention of cardiovascular disease in patients with multiple risk factors.
Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

Ent-atorvastatin (3S,5S-atorvastatin) is impurity and inactive enantiomer of lipid-lowering agent Atorvastatin.
Atazanavir is the first once-daily protease inhibitor for the treatment of human immunodeficiency virus type 1 infection and should be used only in combination therapy, as part of a highly active antiretroviral therapy (HAART) regimen. In addition to being the most potent protease inhibitor in vitro, atazanavir has a distinct cross-resistance profile that does not confer resistance to other protease inhibitors. However, resistance to other protease inhibitors often confers clinically relevant resistance to atazanavir.
Ezetimibe is an anti-hyperlipidemic medication which is used to lower cholesterol levels. Specifically, it appears to bind to a critical mediator of cholesterol absorption, the Niemann-Pick C1-Like 1 (NPC1L1) protein on the gastrointestinal tract epithelial cells as well as in hepatocytes. Ezetimibe is in a class of lipid-lowering compounds that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe, administered alone is indicated as adjunctive therapy to diet for the reduction of elevated total-C, LDL-C, and Apo B in patients with primary (heterozygous familial and non-familial) hypercholesterolemia. It is also used in combination therapy with HMG-CoA reductase inhibitors. Ezetimibe has a mechanism of action that differs from those of other classes of cholesterol-reducing compounds (HMG-CoA reductase inhibitors, bile acid sequestrants, fibric acid derivatives, and plant stanols). Ezetimibe does not inhibit cholesterol synthesis in the liver, or increase bile acid excretion but instead localizes and appears to act at the brush border of the small intestine and inhibits the absorption of cholesterol, leading to a decrease in the delivery of intestinal cholesterol to the liver. This causes a reduction of hepatic cholesterol stores and an increase in clearance of cholesterol from the blood; this distinct mechanism is complementary to that of HMG-CoA reductase inhibitors.
Amlodipine is a dihydropyridine calcium antagonist (calcium ion antagonist or slow-channel blocker) that inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. Experimental data suggest that amlodipine binds to both dihydropyridine and nondihydropyridine binding sites. The contractile processes of cardiac muscle and vascular smooth muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Amlodipine inhibits calcium ion influx across cell membranes selectively, with a greater effect on vascular mooth muscle cells than on cardiac muscle cells. Amlodipine is indicated for the treatment of hypertension and coronary artery disease.
Status:
Investigational
Source:
INN:olacaftor [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:contezolid [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

MRX-I is a potent oxazolidinone antibiotic against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, penicillin-intermediate S. pneumoniae, and vancomycin-resistant enterococci. MRX-I demonstrated comparable or slightly higher activity than linezolid and was active against enterococci resistant to both vancomycin and teicoplanin. In addition, MRX-I exhibited bactericidal activities against staphylococci and streptococci but was bacteriostatic against enterococci. MRX-I inhibits formation of functional 70S initiation complex essential for bacterial protein synthesis, leading to the cessation of bacterial growth. Oral MRX-I was associated with a greater bioavailability and exposure when administered with food, and minimal accumulation of MRX-I occurred after multiple-dose administration. Oral MRX-I was well tolerated at single doses of up to 1,200 and 800 mg q12h for up to 28 days; all adverse events were mild to moderate in severity, and there was no drug discontinuation due to adverse events.