U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 911 - 920 of 978 results

Status:
US Approved OTC
Source:
21 CFR 355.10(c)(1)(ii) anticaries:dentifrices stannous fluoride
Source URL:
First marketed in 1921
Source:
Calcium Oxide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Oleylamine (or oleamine) is a versatile and flexible reagent in synthesis as well as the desired surface ligand for the synthesis of nanoparticles. This compound is rather toxic to mammalian organism.
Status:
US Approved OTC
Source:
21 CFR 331.11(m) antacid:tartrate-containing tartrate (acid or salt)
Source URL:
First marketed in 1921
Source:
Tartaric Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Conditions:

Tartaric acid is found in many plants such as grapes, tamarinds, pineapples, mulberries and so on. Wine lees (called mud in the US), the sediment collected during the fermentation of grapes, contains potassium bitartrate (potassium hydrogen tartrate) as its major component. L-(+)-tartaric acid is an enantiomer of tartaric acid. Twenty five years before the tetrahedral structure for carbon was proposed in 1874 to explain the optical activity and other properties of organic compounds, Louis Pasteur discovered the existence of enantiomerism in tartaric acid. L-(+)-tartaric acid is widely used in food and beverage as acidity regulator with E number E334.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.
Status:
Investigational
Source:
INN:Deulinoleic acid [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
NCT00942656: Not Applicable Interventional Completed Cardiovascular Disease
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Vaccenic acid (VA) (t11 octadecenoic acid) is a positional and geometric isomer of oleic acid (c9-octadecenoic acid), and is the predominant trans monoene in ruminant fats (50%–80% of total trans content). Dietary VA can be desaturated to cis-9,trans-11 conjugated linoleic acid (c9,t11-CLA) in ruminants, rodents, and humans. Hydrogenated plant oils are another source of VA in the diet, and it has been recently estimated that this source may contribute to about 13%–17% of total VA intake. In contrast to suggestions from the epidemiological studies, the majority of studies using cancer cell lines (Awad et al. 1995; Miller et al. 2003) or rodent tumors (Banni et al. 2001; Corl et al. 2003; Ip et al. 1999; Sauer et al. 2004) have demonstrated that VA reduces cell growth and (or) tumor metabolism. Animal and in vitro studies suggest that the anti-cancer properties of VA are due, in part, to the in vivo conversion of VA to c9,t11-CLA. However, several additional mechanisms for the anti-cancer effects of VA have been proposed, including changes in phosphatidylinositol hydrolysis, reduced proliferation, increased apoptosis, and inhibition of fatty acid uptake. In conclusion, although the epidemiological evidence of VA intake and cancer risk suggests a positive relationship, this is not supported by the few animal studies that have been performed. The majority of the studies suggest that any health benefit of VA may be conferred by in vivo mammalian conversion of VA to c9,t11-CLA. VA acts as a partial agonist to both peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ in vitro, with similar affinity compared to commonly known PPAR agonists. Hypolipidemic and antihypertrophic bioactivity of VA is potentially mediated via PPAR-/-dependent pathways.
Status:
Investigational
Source:
NCT01320579: Phase 2 Human clinical trial Completed Dermatitis, Atopic/diagnosis/immunology
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Urocanic acid is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e. g. , pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. It has also been proposed that c-UA may mediate the transient alteration in immune surveillance resulting in immunosuppression induced after UV-irradiation, by interacting with immune cells locally and/or systemically to generate T cells with suppressor function.
Status:
Investigational
Source:
NCT03560323: Phase 1 Interventional Recruiting Heart Failure
(2019)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

Showing 911 - 920 of 978 results