U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 81 - 90 of 1140 results

Nilotinib (AMN107, trade name Tasigna) is a kinase inhibitor indicated for the treatment of chronic phase and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia (CML) in adult patients resistant to or intolerant to prior therapy that included imatinib. Nilotinib is an inhibitor of the Bcr-Abl kinase. Nilotinib binds to and stabilizes the inactive conformation of the kinase domain of Abl protein. In vitro, nilotinib inhibited Bcr-Abl mediated proliferation of murine leukemic cell lines and human cell lines derived from Ph+ CML patients. Under the conditions of the assays, nilotinib was able to overcome imatinib resistance resulting from Bcr-Abl kinase mutations, in 32 out of 33 mutations tested. In vivo, nilotinib reduced the tumor size in a murine Bcr-Abl xenograft model. Nilotinib inhibited the autophosphorylation of the following kinases at IC50 values as indicated: Bcr-Abl (20-60 nM), PDGFR (69 nM) and c-Kit (210 nM). Nilotinib is currently being trialed in people with Parkinson's disease, as it appears to be able to halt progression of the disease and even improve their symptoms. The drug also has a number of adverse effects typical of anti-cancer drugs: a headache, fatigue, gastrointestinal problems such as nausea, vomiting, diarrhea and constipation, muscle and joint pain, rash and other skin conditions, flu-like symptoms, and reduced blood cell count. Less typical side effects are those of the cardiovascular system, such as hypertension (high blood pressure), various types of arrhythmia, and prolonged QT interval. Interaction of nilotinib with OATP1B1 and OATP1B3 may alter its hepatic disposition and can lead to transporter mediated drug-drug interactions. Nilotinib is an inhibitor of OATP-1B1 transporter but not for OATP-1B3. Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contributes significantly to the pharmacological activity of nilotinib.
Lapatinib is a small molecule and a member of the 4-anilinoquinazoline class of kinase inhibitors. It is present as the monohydrate of the ditosylate salt (trade name TYKERB). Lapatinib is dual inhibitor of the EGFR (epidermal growth factor receptor; also called HER1 or ErbB1) and HER2 receptor tyrosine kinases. Lapatinib was developed by GlaxoSmithKline, however, Novartis subsequently acquired all the rights to the drug from GlaxoSmithKline. TYKERB is indicated in combination therapy for the treatment of metastatic breast cancer that overexpresses the HER2 receptor.
Status:
First approved in 2006

Class (Stereo):
CHEMICAL (ABSOLUTE)



Decitabine was first synthesized by Pliml and Sorm in the Institute of Organic Chemistry, Czechoslovak Academy of Sciences in 1964. Later, the drug was approved by FDA for the treatment of myelodysplastic syndromes in patients with cancer. Upon administration the decitabine is metabolized to the active phosphorylated metabolite which is incorporated into DNA and thus inhibits DNA methyltransferase (decitabine deplete DNMT1).
Sunitinib (marketed as Sutent by Pfizer, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor. Sunitinib was evaluated for its inhibitory activity against a variety of kinases and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRa and PDGFRb), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony-stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib adverse events are considered somewhat manageable and the incidence of serious adverse events low. The most common adverse events associated with sunitinib therapy are fatigue, diarrhea, nausea, anorexia, hypertension, yellow skin discoloration, hand-foot skin reaction, and stomatitis. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. Dose reductions were required in 50% of the patients studied in RCC in order to manage the significant toxicities of this agent.
Dasatinib [BMS 354825] is an orally active, small molecule, dual inhibitor of both SRC and ABL kinases that is under development with Bristol-Myers Squibb for the treatment of patients with chronic myelogenous leukaemia (CML) and imatinib-acquired resistance/intolerance. It’s used for the treatment of adults with chronic, accelerated, or myeloid or lymphoid blast phase chronic myeloid leukemia with resistance or intolerance to prior therapy. Also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. While imatinib remains a frontline therapy for CML, patients with advanced disease frequently develop resistance to imatinib therapy through multiple mechanisms. Dasatinib is also undergoing preclinical evaluation for its potential as a therapy against multiple myeloma. Bristol-Myers Squibb has a composition-of-matter patent covering this research approach that will expire in 2020. Dasatinib, at nanomolar concentrations, inhibits the following kinases: BCR-ABL, SRC family (SRC, LCK, YES, FYN), c-KIT, EPHA2, and PDGFRβ. Based on modeling studies, dasatinib is predicted to bind to multiple conformations of the ABL kinase.
Sorafenib (BAY 43-9006), marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced renal cell carcinoma (primary kidney cancer, hepatocellular carcinoma and for the treatment of patients with locally recurrent or metastatic, progressive, differentiated thyroid carcinoma (DTC) that is refractory to radioactive iodine treatment. It has also received "Fast Track" designation by the FDA for the treatment of advanced hepatocellular carcinoma (primary liver cancer), and has since performed well in Phase III trials. Sorafenib was shown to interact with multiple intracellular (CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, VEGFR- 2, VEGFR- 3, and PDGFR- ß). Several of these kinases are thought to be involved in angiogenesis. Thus, sorafenib may inhibit tumor growth by a dual mechanism, acting either directly on the tumor (through inhibition of Raf and Kit signaling) and/or on tumor angiogenesis (through inhibition of VEGFR and PDGFR signaling). Sorafenib inhibited tumor growth of the murine renal cell carcinoma, RENCA, and several other human tumor xenografts in athymic mice. A reduction in tumor angiogenesis was seen in some tumor xenograft models.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Arranon is a nucleoside metabolic inhibitor indicated for the treatment of patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. It is a purine nucleoside analog converted to its corresponding arabinosylguanine nucleotide triphosphate (araGTP), resulting in inhibition of DNA synthesis and cytotoxicity. Administration of nelarabine in combination with adenosine deaminase inhibitors, such 195 as pentostatin, is not recommended. The most common (≥20%) adverse reactions were: anemia, thrombocytopenia, neutropenia, nausea, diarrhea, vomiting, constipation, fatigue, pyrexia, cough, and dyspnea
Erlotinib hydrochloride (trade name Tarceva, Genentech/OSIP, originally coded as OSI-774) is a drug used to treat non-small cell lung cancer, pancreatic cancer and several other types of cancer. Similar to gefitinib, erlotinib specifically targets the epidermal growth factor receptor (EGFR) tyrosine kinase. It binds in a reversible fashion to the adenosine triphosphate (ATP) binding site of the receptor. Erlotinib has recently been shown to be a potent inhibitor of JAK2V617F activity. JAK2V617F is a mutant of tyrosine kinase JAK2, is found in most patients with polycythemia vera (PV) and a substantial proportion of patients with idiopathic myelofibrosis or essential thrombocythemia. The study suggests that erlotinib may be used for treatment of JAK2V617F-positive PV and other myeloproliferative disorders. The mechanism of clinical antitumor action of erlotinib is not fully characterized. Erlotinib inhibits the intracellular phosphorylation of tyrosine kinase associated with the epidermal growth factor receptor (EGFR). Specificity of inhibition with regard to other tyrosine kinase receptors has not been fully characterized. EGFR is expressed on the cell surface of normal cells and cancer cells.
Azacitidine (Vidaza; Pharmion), an inhibitor of DNA methylation, was approved by the US FDA for the treatment of myelodysplastic syndromes in May 2004. It is the first drug to be approved by the FDA for treating this rare family of bone-marrow disorders, and has been given orphan-drug status. It is also a pioneering example of an agent that targets 'epigenetic' gene silencing, a mechanism that is exploited by cancer cells to inhibit the expression of genes that counteract the malignant phenotype. VIDAZA is used for the treatment of patients with the following FAB myelodysplastic syndrome (MDS) subtypes: Refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS), refractory anemia with excess blasts (RAEB), refractory anemia with excess blasts in transformation (RAEB-T), and chronic myelomonocytic leukemia (CMMoL). Azacitidine is a pyrimidine nucleoside analog of cytidine. It is believed to exert its antineoplastic effects by causing hypomethylation of DNA and direct cytotoxicity on abnormal hematopoietic cells in the bone marrow. The concentration of azacitidine required for maximum inhibition of DNA methylation in vitro does not cause major suppression of DNA synthesis. Hypomethylation may restore normal function to genes that are critical for differentiation and proliferation. As azacitidine is a ribonucleoside, it incorporates into RNA to a larger extent than into DNA. The incorporation into RNA leads to the dissemble of polyribosomes, defective methylation and acceptor function of transfer RNA, and inhibition of the production of protein. Its incorporation into DNA leads to a covalent binding with DNA methyltransferases, which prevents DNA synthesis and subsequent cytotoxicity. The cytotoxic effects of azacitidine cause the death of rapidly dividing cells, including cancer cells that are no longer responsive to normal growth control mechanisms. Non-proliferating cells are relatively insensitive to azacitidine.