{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Pharmacologic Substance[C1909]|Antineoplastic Agent[C274]" in comments (approximate match)
Status:
US Approved Rx
(2019)
Source:
ANDA208856
(2019)
Source URL:
First approved in 1998
Source:
NDA020998
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID). It works by reducing hormones that cause inflammation and pain in the body. Celecoxib is an analgesic that is FDA approved for the treatment of osteoarthritis,rheumatoid arthritis,juvenile rheumatoid arthritis, ankylosing, spondylitis, acute pain and primary dysmenorrhea. The mechanism of action of Celecoxib is believed to be due to inhibition of prostaglandin synthesis, primarily via inhibition of cyclooxygenase-2 (COX-2). Concomitant use of Celecoxib and analgesic doses of aspirin is not generally recommended. Concomitant use with Celecoxib may diminish the antihypertensive effect of ACE Inhibitors, Angiotensin Receptor Blockers (ARB), or BetaBlockers and can increase serum concentration and prolong half-life of digoxin. Common adverse reactions include hypertension, diarrhea, nausea and headache.
Status:
US Approved Rx
(2018)
Source:
ANDA208813
(2018)
Source URL:
First approved in 1997
Source:
FARESTON by KYOWA KIRIN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Toremifene is an antineoplastic hormonal agent primarily used in the treatment of advanced breast cancer. Toremifene is a nonsteroidal agent that has demonstrated potent antiestrogenic properties in animal test systems. The antiestrogenic effects may be related to its ability to compete with estrogen for binding sites in target tissues such as breast. Toremifene inhibits the induction of rat mammary carcinoma induced by dimethylbenzanthracene (DMBA) and causes the regression of already established DMBA-induced tumors. In this rat model, Toremifene appears to exert its antitumor effects by binding the estrogen receptors. In cytosols derived from human breast adenocarcinomas, Toremifene competes with estradiol for estrogen receptor protein. Toremifene is a nonsteroidal triphenylethylene derivative. Toremifene binds to estrogen receptors and may exert estrogenic, antiestrogenic, or both activities, depending upon the duration of treatment, animal species, gender, target organ, or endpoint selected. The antitumor effect of toremifene in breast cancer is believed to be mainly due to its antiestrogenic effects, in other words, its ability to compete with estrogen for binding sites in the cancer, blocking the growth-stimulating effects of estrogen in the tumor. Toremifene may also inhibit tumor growth through other mechanisms, such as induction of apoptosis, regulation of oncogene expression, and growth factors. Toremifene is used for the treatment of metastatic breast cancer in postmenopausal women with estrogen receptor-positive or receptor-unknown tumors. Toremifene is currently under investigation as a preventative agent for prostate cancer in men with high-grade prostatic intraepithelial neoplasia and no evidence of prostate cancer. Toremifene is marketed in the United States under the brand name Fareston.
Status:
US Approved Rx
(2007)
Source:
NDA022042
(2007)
Source URL:
First approved in 1997
Source:
NDA020815
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Status:
US Approved Rx
(2011)
Source:
ANDA090289
(2011)
Source URL:
First approved in 1997
Source:
NDA020726
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Letrozole (trade name Femara), a nonsteroidal aromatase inhibitor. Femara is indicated for the adjuvant treatment of postmenopausal women with hormone receptor positive early breast cancer. Also is indicated for the extended adjuvant treatment of early breast cancer in postmenopausal women, who have received 5 years of adjuvant tamoxifen therapy. Femara has to be used for first-line treatment of postmenopausal women with hormone receptor positive or unknown, locally advanced or metastatic breast cancer and for the treatment of advanced breast cancer in postmenopausal women with disease progression following antiestrogen therapy. Treatment of breast cancer thought to be hormonally responsive (i.e., estrogen and/or progesterone receptor positive or receptor unknown) has included a variety of efforts to decrease estrogen levels (ovariectomy, adrenalectomy, hypophysectomy) or inhibit estrogen effects (antiestrogens and progestational agents). These interventions lead to decreased tumor mass or delayed progression of tumor growth in some women. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Letrozole inhibits the conversion of androgens to estrogens. Letrozole selectively inhibits gonadal steroidogenesis but has no significant effect on adrenal mineralocorticoid or glucocorticoid synthesis. Letrozole inhibits the aromatase enzyme by competitively binding to the heme of the cytochrome P450 subunit of the enzyme, resulting in a reduction of estrogen biosynthesis in all tissues. Treatment of women with letrozole significantly lowers serum estrone, estradiol and estrone sulfate and has not been shown to significantly affect adrenal corticosteroid synthesis, aldosterone synthesis, or synthesis of thyroid hormones. Letrozole is rapidly and completely absorbed from the gastrointestinal tract and absorption is not affected by food. Metabolism to a pharmacologically inactive carbinol metabolite (4,4'¬ methanol-bisbenzonitrile) and renal excretion of the glucuronide conjugate of this metabolite is the major pathway of letrozole clearance. In human microsomes with specific CYP isozyme activity, CYP3A4 metabolized letrozole to the carbinol metabolite while CYP2A6 formed both this metabolite and its ketone analog. In human liver microsomes, letrozole strongly inhibited CYP2A6 and moderately inhibited CYP2C19. The most common side effects are sweating, hot flashes, arthralgia (joint pain), and fatigue
Status:
US Approved Rx
(2023)
Source:
ANDA215744
(2023)
Source URL:
First approved in 1996
Source:
NDA020449
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Docetaxel was protected by patents (U.S. patent and European patent) which were owned by Sanofi-Aventis, and so was available only under the Taxotere brand name internationally. The European patent expired in 2010. Docetaxel is a clinically well-established anti-mitotic chemotherapy medication used for the treatment of patients with locally advanced or metastatic breast cancer after failure of prior chemotherapy. Also used as a single agent in the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior platinum-based chemotherapy. It is also used in combination with prednisone, in the treatment of patients with androgen independent (hormone refractory) metastatic prostate cancer. Furthermore, docetaxel has uses in the treatment of gastric adenocarcinoma and head and neck cancer. Docetaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, docetaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, docetaxel binds to the β-subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of docetaxel locks these building blocks in place. The resulting microtubule/docetaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that docetaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(2016)
Source:
ANDA208322
(2016)
Source URL:
First approved in 1996
Source:
DIFFERIN by GALDERMA LABS LP
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Adapalene is a topical retinoid primarily used in the treatment of acne and is used (off-label) to treat keratosis pilaris as well as other skin conditions. Galderma currently markets it under the trade names Differin in some countries, and Adaferin in India. Adapalene acts on retinoid receptors. Biochemical and pharmacological profile studies have demonstrated that adapalene is a modulator of cellular differentiation, keratinization, and inflammatory processes all of which represent important features in the pathology of acne vulgaris. Mechanistically, adapalene binds to specific retinoic acid nuclear receptors but does not bind to the cytosolic receptor protein. Although the exact mode of action of adapalene is unknown, it is suggested that topical adapalene normalizes the differentiation of follicular epithelial cells resulting in decreased microcomedone formation.
Status:
US Approved Rx
(2011)
Source:
ANDA091365
(2011)
Source URL:
First approved in 1996
Source:
GEMZAR by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar® by Eli Lilly and Company. Gemcitabine inhibits thymidylate synthetase, leading to inhibition of DNA synthesis and cell death. Gemcitabine is a prodrug so activity occurs as a result of intracellular conversion to two active metabolites, gemcitabine diphosphate and gemcitabine triphosphate by deoxycitidine kinase. Gemcitabine diphosphate also inhibits ribonucleotide reductase, the enzyme responsible for catalyzing synthesis of deoxynucleoside triphosphates required for DNA synthesis. Finally, Gemcitabine triphosphate (diflurorodeoxycytidine triphosphate) competes with endogenous deoxynucleoside triphosphates for incorporation into DNA. Gemcitabine is indicated for the treatment of advanced ovarian cancer that has relapsed at least 6 months after completion of platinum-based therapy; metastatic ovarian cancer; inoperable, locally advanced (Stage IIIA or IIIB), or metastatic (Stage IV) non-small cell lung cancer; and locally advanced (nonresectable Stage II or Stage III) or metastatic (Stage IV) adenocarcinoma of the pancreas.
Status:
US Approved Rx
(2024)
Source:
ANDA217774
(2024)
Source URL:
First approved in 1996
Source:
SORIATANE by STIEFEL LABS INC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Acitretin is all-Trans-9-(4-methoxy-2, 3, 6¬ trimethylphenyl)-three, 7-dimethyl-2, 4, 6, 8-nonatetraenoic acid. It is a metabolite of exterminate and is related to both retinoic acid and retinol (vitamin A). It is taken orally, and is typically used for psoriasis. The mechanism of action of is unknown. However it is believed to work by targeting specific receptors (retinoid receptors such as RXR and RAR) in the skin, which help normalize the growth cycle of skin cells. Studies on nuclear retinoic acid receptors have shown that acitretin activates all 3 receptor subtypes (RAR-alpha, -beta, and -gamma) without measurable receptor binding; this paradox remains unexplained.
Status:
US Approved Rx
(2010)
Source:
ANDA078944
(2010)
Source URL:
First approved in 1995
Source:
NDA020541
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Anastrozole (marketed under the trade name Arimidex by AstraZeneca) is a drug indicated in the treatment of breast cancer in post-menopausal women. It is used both in adjuvant therapy (i.e. following surgery) and in metastatic breast cancer. It decreases the amount of estrogens that the body makes. Anastrozole belongs in the class of drugs known as aromatase inhibitors. It inhibits the enzyme aromatase, which is responsible for converting androgens (produced by women in the adrenal glands) to estrogens. The growth of many cancers of the breast is stimulated or maintained by estrogens. In postmenopausal women, estrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens (primarily androstenedione and testosterone) to estrone and estradiol. The suppression of estrogen biosynthesis in peripheral tissues and in the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme. Anastrozole is a selective non-steroidal aromatase inhibitor. It significantly lowers serum estradiol concentrations and has no detectable effect on formation of adrenal corticosteroids or aldosterone.
Status:
US Approved Rx
(2003)
Source:
ANDA075992
(2003)
Source URL:
First approved in 1994
Source:
NAVELBINE by PIERRE FABRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Vinorelbine (trade name Navelbine) is a semi-synthetic vinca-alkaloid with a broad spectrum
of anti-tumour activity. Vinorelbine is a mitotic spindle poison that impairs chromosomal segregation during mitosis. It blocks cells at G2/M. Microtubules (derived from polymers of tubulin) are the principal target of vinorelbine. Vinorelbine was developed by Pierre Fabre under licence from the CNRS in France. NAVELBINE (vinorelbine tartrate) as a single agent or in combination is indicated for the first line treatment of non small cell lung cancer and advanced breast cancer.