U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 881 - 890 of 3847 results

Status:
First marketed in 1827

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Morphine is one of the most important and widely used opioid for the treatment of chronic and acute pain: the very wide interindividual variability in the patients’ response to the drug may have genetic derivations. Sulphate salt of morphine sold under the many brand names, one of them, DURAMORPH, which is indicated for the management of pain severe enough to require use of an opioid analgesic by intravenous administration, and for which alternative treatments are not expected to be adequate. In addition for the epidural or intrathecal management of pain without attendant loss of motor, sensory, or sympathetic function. Morphine is a full opioid agonist and is relatively selective for the mu-opioid receptor, although it can bind to other opioid receptors at higher doses. The principal therapeutic action of morphine is analgesia. Like all full opioid agonists, there is no ceiling effect for analgesia with morphine. The precise mechanism of the analgesic action is unknown. However, specific CNS opioid receptors for endogenous compounds with opioid-like activity have been identified throughout the brain and spinal cord and are thought to play a role in the analgesic effects of this drug. Morphine has a high potential for addiction and abuse. Common side effects include drowsiness, vomiting, and constipation. Caution is advised when used during pregnancy or breast-feeding, as morphine will affect the baby.
Status:
US Approved OTC
Source:
21 CFR 333.210(g) antifungal clotrimazole
Source URL:
First approved in 1975

Class (Stereo):
CHEMICAL (ACHIRAL)



Clotrimazole is an anti-fungal medicine indicated for the treatment of vaginal yeast infections and tinea. It can be used either in combination with other drugs (betamethasone dipropionate) or alone, in form of topical or vaginal cream. The drug exerts its action by inhibiting lanosterol demethylase thereby affecting the growth of fungi.
Status:
US Approved OTC
Source:
21 CFR 333.210(c) antifungal miconazole nitrate
Source URL:
First approved in 1974

Class (Stereo):
CHEMICAL (RACEMIC)



Miconazole is a synthetic imidazole derivative, a topical antifungal agent for use in the local treatment of vaginal, and skin and nail infections due to yeasts and dermatophytes. It is particularly active against Candida spp., Trichophyton spp., Epidermophyton spp., Microsporum spp. and Pityrosporon orbiculare (Malassezia furfur), but also possesses some activity against Gram-positive bacteria. It binds to the heme moiety of the fungal cytochrome P-450 dependent enzyme lanosterol 14-alpha-demethlyase. Inhibits 14-alpha-demethlyase, blocks formation of ergosterol and leads to the buildup of toxic methylated 14-a-sterols. Miconazole also affects the synthesis of triglycerides and fatty acids and inhibits oxidative and peroxidative enzymes, increasing the amount of active oxygen species within the cell.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(7) cough/cold:nasal decongestant oxymetazoline hydrochloride
Source URL:
First approved in 1964
Source:
Afrin by Schering
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Oxymetazoline is an adrenergic alpha-agonist, direct acting sympathomimetic, used as a vasoconstrictor to relieve nasal congestion The sympathomimetic action of oxymetazoline constricts the smaller arterioles of the nasal passages, producing a prolonged (up to 12 hours), gentle and decongesting effect. Oxymetazoline elicits relief of conjunctival hyperemia by causing vasoconstriction of superficial conjunctival blood vessels. The drug's action has been demonstrated in acute allergic conjunctivitis and in chemical (chloride) conjunctivitis. Oxymetazoline is self-medication for temporary relief of nasal congestion associated with the common cold, hay fever, or other upper respiratory allergies. Oxymetazoline is available over-the-counter as a topical decongestant in the form of oxymetazoline hydrochloride in nasal sprays such as Afrin, Operil, Dristan, Dimetapp, oxyspray, Facimin, Nasivin, Nostrilla, Sudafed OM, Vicks Sinex, Zicam, SinuFrin, and Mucinex Full Force. Due to its vasoconstricting properties, oxymetazoline is also used to treat nose bleeds and eye redness.
Status:
US Approved OTC
Source:
21 CFR 333.210(a) antifungal clioquinol
Source URL:
First approved in 1961

Class (Stereo):
CHEMICAL (ACHIRAL)


Clioquinol is a broad-spectrum antibacterial with antifungal properties, bacteriostatic. It is used as an antifungal and antiprotozoal topical drug OTC product for treatment of human infections. Previousely was used for wide number of intestinal disorders including lambliasis, shigellosis, balantidiral dysentery and some forms of diarrheas. The physiologic effect of clioquinol is by increased histamine release and cell-mediated immunity. It is a member of a family hydroxyquinolines which inhibit certain enzymes related to DNA replication. It is a copper, iron and zink chelating agent. It is an organic molecule with a quinolinic acid as its apparent core which itself is a neurotransmitter. In large doses it possesses neurotoxicity and may induce neurological disease such as subacute myelo-optic neuropathy by creating copper deficiency that leads to zink excess. SMON (Sub-Acute-Myelo-Optical-Neuropathy) - a polio-like disease began as an epidemic in 1959 in Japan was believed to be a Clioquinol caused. Clioquinol is a standardized chemical allergen. It has been resurrected as a potential treatment for Alzheimer's disease since it perturbs metallo-chemistry of amyloid and clioquinol treatment has been shown to be beneficial in a mouse model of Alzheimer's disease.
Status:
US Approved OTC
Source:
21 CFR 341.14(a)(3) cough/cold:antitussive dextromethorphan
Source URL:
First approved in 1954
Source:
Romilar by Hoffmann-La Roche
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dextromethorphan is a non-narcotic morphine derivative widely used as an antitussive for almost 40 years. It has attracted attention due to its anticonvulsant and neuroprotective properties. It is a cough suppressant in many over-the-counter cold and cough medicines. In 2010, the FDA approved the combination product dextromethorphan/quinidine for the treatment of pseudobulbar affect. Dextromethorphan suppresses the cough reflex by a direct action on the cough center in the medulla of the brain. Dextromethorphan shows high-affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist and acts as a non-competitive channel blocker. It is one of the widely used antitussives and is used to study the involvement of glutamate receptors in neurotoxicity. Dextromethorphan (DM) is a sigma-1 receptor agonist and an uncompetitive NMDA receptor antagonist. The mechanism by which dextromethorphan exerts therapeutic effects in patients with pseudobulbar affect is unknown. Dextromethorphan should not be taken with monoamine oxidase inhibitors due to the potential for serotonin syndrome. Dextromethorphan is extensively metabolized by CYP2D6 to dextrorphan, which is rapidly glucuronidated and unable to cross the blood-brain barrier.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Chlorpheniramine is an antihistamine. Chlorpheniramine binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Chlorpheniramine is used for relieving symptoms of sinus congestion, sinus pressure, runny nose, watery eyes, itching of the nose and throat, and sneezing due to upper respiratory infections (eg, colds), allergies, and hay fever. In addition to being a histamine H1 receptor (HRH1) antagonist, chlorphenamine has been shown to work as a serotonin-norepinephrine reuptake inhibitor or SNRI.
Status:
US Approved OTC
Source:
21 CFR 341.12(h) cough/cold:antihistamine doxylamine succinate
Source URL:
First approved in 1948

Class (Stereo):
CHEMICAL (RACEMIC)



Doxylamine is an antihistamine commonly used as a sleep aid. This drug is also used to relieve symptoms of hay fever (allergic rhinitis), hives (rash or itching), and other allergic reactions. Doxylamine is a member of the ethanolamine class of antihistamines and has anti-allergy power far superior to virtually every other antihistamine on the market, with the exception of diphenhydramine (Benadryl). It is also the most powerful over-the-counter sedative available in the United States, and more sedating than many prescription hypnotics. In a study, it was found to be superior to even the barbiturate, phenobarbital for use as a sedative. Doxylamine is also a potent anticholinergic. Like other antihistamines, doxylamine acts by competitively inhibiting histamine at H1 receptors. It also has substantial sedative and anticholinergic effects. Used alone as a short-term sleep aid, in combination with other drugs as a night-time cold and allergy relief drug. Also used in combination with Vitamin B6 (pyridoxine) to prevent morning sickness in pregnant women.
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.