{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for alpha root_names_name in Any Name (approximate match)
Status:
US Approved Rx
(2000)
Source:
NDA021027
(2000)
Source URL:
First approved in 1999
Source:
NDA020862
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Doxercalciferol is a synthetic vitamin D2 analog that undergoes metabolic activation in vivo to form 1α,25-dihydroxyvitamin D2 (1α,25-(OH)2D2), a naturally occurring, biologically active form of vitamin D2. Doxercalciferol is indicated for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on dialysis, as well as for the treatment of secondary hyperparathyroidism in patients with Stage 3 or Stage 4 chronic kidney disease. Doxercalciferol is marketed under the brand name Hectorol by Genzyme Corporation, and is manufactured by Catalent Pharma Solutions, Inc.
Status:
US Approved Rx
(2015)
Source:
ANDA206127
(2015)
Source URL:
First approved in 1998
Source:
INTEGRILIN by MSD SUB MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Eptifibatide is a platelet aggregation inhibitor - an anti-coagulant that selectively blocks the platelet glycoprotein IIb/IIIa receptor. It is a cyclic heptapeptide derived from a protein found in the venom of the southeastern pygmy rattlesnake. It belongs to the class of the so called arginin-glycin-aspartat-mimetics and reversibly binds to platelets. Eptifibatide inhibits platelet aggregation by reversibly binding to the platelet receptor glycoprotein (GP) IIb/IIIa of human platelets, thus preventing the binding of fibrinogen, von Willebrand factor, and other adhesive ligands. Inhibition of platelet aggregation occurs in a dose- and concentration-dependent manner. It is used for treatment of myocardial infarction and acute coronary syndrome.
Status:
US Approved Rx
(1998)
Source:
NDA020785
(1998)
Source URL:
First approved in 1998
Source:
NDA020785
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Thalidomide is an immunomodulatory agent with a spectrum of activity that is not fully characterized. Thalidomide is racemic — it contains both left and right-handed isomers in equal amounts: one enantiomer is effective against morning sickness, and the other is teratogenic. The enantiomers are converted to each other in vivo. That is, if a human is given D-thalidomide or L-thalidomide, both isomers can be found in the serum. Hence, administering only one enantiomer will not prevent the teratogenic effect in humans. In patients with erythema nodosum leprosum (ENL) the mechanism of action is not fully understood. Available data from in vitro studies and preliminary clinical trials suggest that the immunologic effects of this compound can vary substantially under different conditions, but may be related to suppression of excessive tumor necrosis factor-alpha (TNF-a) production and down-modulation of selected cell surface adhesion molecules involved in leukocyte migration. For example, administration of thalidomide has been reported to decrease circulating levels of TNF-a in patients with ENL, however, it has also been shown to increase plasma TNF-a levels in HIV-seropositive patients. As a cancer treatment, the drug may act as a VEGF inhibitor. Thalidomide is used for the acute treatment of the cutaneous manifestations of moderate to severe erythema nodosum leprosum (ENL). Also for use as maintenance therapy for prevention and suppression of the cutaneous manifestations of ENL recurrence. Thalidomide is sold under the brand name Immunoprin, among others.
Status:
US Approved Rx
(2017)
Source:
ANDA203897
(2017)
Source URL:
First approved in 1998
Source:
NDA020819
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Paricalcitol (Zemplar) is a synthetic vitamin D(2) analogue that inhibits the secretion of parathyroid hormone (PTH) through binding to the vitamin D receptor. It is approved in the US and in most European nations for intravenous use in the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure in adult, and in the US paediatric, patients. Paricalcitol effectively reduced elevated serum PTH levels and was generally well tolerated in children and adults with secondary hyperparathyroidism associated with chronic renal failure. In well designed clinical trials, paricalcitol was as effective as calcitriol and as well tolerated in terms of the incidence of prolonged hypercalcaemia and/or elevated calcium-phosphorus product (Ca x P). Preclinical and in vitro studies have demonstrated that paricalcitol's biological actions are mediated through binding of the vitamin D receptor, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion.
Status:
US Approved Rx
(2019)
Source:
ANDA207609
(2019)
Source URL:
First approved in 1998
Source:
NDA020583
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2007)
Source:
ANDA065473
(2007)
Source URL:
First approved in 1997
Source:
OMNICEF by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefdinir is an extended-spectrum, semisynthetic cephalosporin, for oral administration. As with other cephalosporins, bactericidal activity of cefdinir results from inhibition of cell wall synthesis. Cefdinir is stable in the presence of some, but not all, β-lactamase enzymes. Cefdinir is indicated for the treatment of: Community-Acquired Pneumonia, Acute Exacerbations of Chronic Bronchitis, Acute Maxillary Sinusitis, Pharyngitis/Tonsillitis and Uncomplicated Skin and Skin Structure Infections. Side effects include diarrhea, vaginal infections or inflammation, nausea, headache, and abdominal pain. Concomitant administration of 300-mg cefdinir capsules with 30 mL Maalox® TC suspension reduces the rate (Cmax) and extent (AUC) of absorption by approximately 40%. As with other β-lactam antibiotics, probenecid inhibits the renal excretion of cefdinir.
Status:
US Approved Rx
(2013)
Source:
ANDA201189
(2013)
Source URL:
First approved in 1997
Source:
PRANDIN by GEMINI LABS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Repaglinide is antidiabetic drug, which is sold under several names including, Prandin in the U.S., Surepost in Japan and GlucoNorm in Canada. It is an oral blood glucose-lowering drug of the meglitinide class used in the management of type 2 diabetes mellitus (also known as non-insulin dependent diabetes mellitus or NIDDM). Repaglinide lowers blood glucose levels by stimulating the release of insulin from the pancreas. This action is dependent upon functioning beta (ß) cells in the pancreatic islets. Insulin secretion by pancreatic β cells is partly controlled by cellular membrane potential. Membrane potential is regulated through an inverse relationship between the activity of cell membrane ATP-sensitive potassium channels (ABCC8) and extracellular glucose concentrations. Extracellular glucose enters the cell via GLUT2 (SLC2A2) transporters. Once inside the cell, glucose is metabolized to produce ATP. High concentrations of ATP inhibit ATP-sensitive potassium channels causing membrane depolarization. High glucose concentrations cause ATP-sensitive potassium channels to close resulting in membrane depolarization and opening of L-type calcium channels. The influx of calcium ions stimulates calcium-dependent exocytosis of insulin granules. Repaglinide closes ATP-dependent potassium channels in the ß-cell membrane by binding at characterizable sites. This potassium channel blockade depolarizes the ß-cell, which leads to an opening of calcium channels. The resulting increased calcium influx induces insulin secretion. The ion channel mechanism is highly tissue selective with low affinity for heart and skeletal muscle. Repaglinide is completely metabolized by oxidative biotransformation and direct conjugation with glucuronic acid after either an IV or oral dose.
Status:
US Approved Rx
(1997)
Source:
NDA020623
(1997)
Source URL:
First approved in 1997
Source:
ANZEMET by VALIDUS PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Dolasetron is an antinauseant and antiemetic agent, which is approved as a mesylate salt under the brand name anzement for the prevention of nausea and vomiting associated with moderately emetogenic cancer chemotherapy, including initial and repeat courses; and for the prevention of postoperative nausea and vomiting. Dolasetron is a highly specific and selective serotonin 5-HT3 receptor antagonist. The serotonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery and centrally in the chemoreceptor trigger zone of the area postrema. It is thought that chemotherapeutic agents produce nausea and vomiting by releasing serotonin from the enterochromaffin cells of the small intestine, and that the released serotonin then activates 5-HT3 receptors located on vagal efferents to initiate the vomiting reflex. This drug is not shown to have activity at other known serotonin receptors, and has low affinity for dopamine receptors. Dolasetron mesilate is rapidly reduced by carbonyl reductase to form its major pharmacologically active metabolite reduced dolasetron. In addition dolasetron was in the phase III clinical trials for the investigation, that intravenous using of dolasetron mesilate reduces pain intensity in patients with fibromyalgia.
Status:
US Approved Rx
(2020)
Source:
ANDA212721
(2020)
Source URL:
First approved in 1996
Source:
MAXIPIME by HOSPIRA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefepime is a fourth-generation cephalosporin antibiotic, which was developed in 1994. Cefepime has a broad spectrum in vitro activity that encompasses a wide range of Gram-positive and Gram-negative bacteria. Within bacterial cells, the molecular targets of cefepime are the penicillin binding proteins (PBP). It is FDA approved for the treatment of pneumonia, febrile neutropenia, uncomplicated UTI, uncomplicated skin infection and complicated intraabdominal infections. Common adverse reactions include rash, hypophosphatemia, diarrhea. Cefepime is metabolized to N-methylpyrrolidine (NMP) which is rapidly converted to the N-oxide (NMP-N-oxide). Urinary recovery of unchanged cefepime accounts for approximately 85% of the administered dose. Less than 1% of the administered dose is recovered from urine as NMP, 6.8% as NMP-N-oxide, and 2.5% as an epimer of cefepime. Because renal excretion is a significant pathway of elimination, patients with renal dysfunction and patients undergoing hemodialysis require dosage adjustment.