U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 71 - 80 of 11219 results

ADX-N05, originally discovered by SK Holdings, is a selective dopamine and norepinephrine reuptake inhibitor (DNRI). ADX-N05 (Solriamfetol, sold under the brand name Sunosi) is approved in the US and is under regulatory review in the EU to improve wakefulness in adult patients with hypersomnia associated with narcolepsy or obstructive sleep apnoea.The US FDA has approved solriamfetol (Sunosi, Jazz Pharmaceuticals) for the treatment of excessive daytime sleepiness in adults with narcolepsy or obstructive sleep apnea.The dual-acting dopamine and norepinephrine reuptake inhibitor is approved for narcolepsy in once-daily 75 mg and 150 mg doses, and in obstructive sleep apnea in once-daily 37.5 mg, 75 mg, and 150 mg doses.
Alpelisib (BYL719) is a PI3Kα-selective inhibitor. PI3K-AKT-mTOR pathway is frequently activated in cancer, therefore investigational PI3K inhibitor alpelisib is considered to be effective as an anticancer agent and has been in clinical development by Novartis. Alpelisib have demonstrated activity in preclinical models of solid tumors and had favorable tolerability profiles, with the most common adverse events consistent with “on-target” inhibition of PI3K in early clinical studies. There are ongoing clinical trials of alpelisib in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme. Combination therapy with other chemo therapeutics may be preferable.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ubrogepant, a small molecule drug, is being developed by Merck & Co for the treatment of migraine. The calcitonin gene-related peptide receptor (CGRP) antagonist is administered orally as a film coated tablet. Ubrogepant is a competitive antagonist with high affinity, potency, and selectivity for the human CGRP receptor. In the four clinical studies (ACHIEVE I, ACHIEVE II, UBR-MD-04 and 3110-105-002) ubrogepant demonstrated efficacy, safety and tolerability in the acute treatment of migraine among a broad patient population, including those who had an insufficient response to a triptan or those patients in whom triptans were contraindicated, as well as in patients who had moderate to severe CV risk profile.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Tenapanor is an inhibitor of the sodium-proton (Na(+)/H(+)) exchanger NHE3 and reduces sodium absorption in the GI tract, thus increasing intestinal fluid. Ardelyx has completed Phase 3 development of tenapanor for the treatment of irritable bowel syndrome with constipation (IBS-C) and submitted a new drug application to the U.S. Food and Drug Administration for the treatment of patients with IBS-C. In addition, tenapanor successfully completed phase III clinical trial for the treatment of hyperphosphatemia in people with end-stage renal disease who are on dialysis and RDX013, a potassium secretagogue program for the potential treatment of high potassium, or hyperkalemia, a problem among certain patients with kidney and/or heart disease.
Siponimod (BAF312) is a dual agonist at the sphingosine-1 phosphate receptors, S1PR1 and S1PR5. The S1P receptor is commonly found on the surface of specific cells residing in the central nervous system (CNS), that are responsible for causing CNS damage that drives loss of function in secondary progressive multiple sclerosis (SPMS). Siponimod (BAF312) enters the brain and by binding to these specific receptors, may prevent the activation of these harmful cells, helping to reduce the loss of physical and cognitive function associated with SPMS.
Triclabendazole, (brand name Avomec, Egaten, etc) is a member of the benzimidazole family of anthelmintics used to treat liver flukes, specifically fascioliasis and paragonimiasis. Triclabendazole used routinely since 1983 in veterinary practice for the treatment of fascioliasis. It was not used in humans until the 1989 epidemic of fascioliasis near the Caspian Sea when Iranian authorities approved the use of the veterinary formulation to treat the infection. Fasciolicidal not only against the adult worms present in the biliary ducts, but also against the immature larval stages of Fasciola migrating through the hepatic parenchyma. Triclabendazole is shown to penetrate into liver flukes by transtegumentary absorption followed by inhibition of the parasite's motility, probably related to the destruction of the microtubular structure, resulting in the death of the parasite; the immobilizing effect is paralleled by changes in the parasite's resting tegumental membrane potential, strongly inhibiting the release of proteolytic enzymes, a process that appears critical to the survival of the parasite. Side effects are generally few, but can include abdominal pain and headaches. Biliary colic may occur due to dying worms. While no harms have been found with use during pregnancy, triclabendazole has not been well studied in this population. Triclabendazole is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. It is not commercially available in the United States.
Pexidartinib (PLX3397) is a small-molecule receptor tyrosine kinase (RTK) inhibitor with potential antineoplastic activity. Pexidartinib binds to and inhibits phosphorylation of stem cell factor receptor (KIT), colony-stimulating factor-1 receptor (CSF1R) and FMS-like tyrosine kinase 3 (FLT3), which may result in the inhibition of tumor cell proliferation and down-modulation of macrophages, osteoclasts and mast cells involved in the osteolytic metastatic disease. FDA has granted Breakthrough Therapy Designation to pexidartinib (PLX3397) for the treatment of tenosynovial giant cell tumor (TGCT) where surgical removal of the tumor would be associated with potentially worsening functional limitation or severe morbidity. In addition to Breakthrough Therapy Designation, pexidartinib (PLX3397) has been granted Orphan Drug Designation by FDA for the treatment of pigmented villonodular synovitis (PVNS) and giant cell tumor of the tendon sheath (GCT-TS). It also has received Orphan Designation from the European Commission for the treatment of TGCT.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Fluorodopa F-18 is the amino acid analog fluorodopa (FDOPA) labeled with fluorine F 18, a positron-emitting isotope. It is diagnostic PET agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumours and to search for recurrence of viable glioma tissue. Fluorodopa F-18 is able to cross the blood-brain barrier and is taken up by brain tumor cells. As uptake is higher in tumor cells, tumors may then be imaged using positron emission tomography (PET). Assessing tumor uptake of FDOPA may be beneficial for diagnosis, localization and in determining further treatment. The clinical usefulness of Fluorodopa F-18 has been evaluated and recognised in France and subsequently in several EU countries. Fluorodopa F-18 was registered in France in 2006. 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (FDOPA) is a large, neutral amino acid that is transported into presynaptic neurons, where it is converted by the enzyme aromatic aminoacid decarboxylase [AAAD]) into fluorodopamine-(18F), which subsequently enters cathecholamine-storage vesicles. 6-fluoro(18F)-L-dopa crosses the blood-brain barrier; therefore, when injected into the blood stream, it reaches the dopaminergic cells in the brain and is used by the brain as a precursor for dopamine. This makes it possible to monitor intracerebral synthesis and uptake of dopamine by means of the positron-emitting 6-fluoro(18F)-L-3,4-dihydroxyphenylalanine (FDOPA), in conjunction with externally-placed devices suited for detection of annihilation photons, which progressively led to the most recent positron emission tomography (PET) units. Iasodopa, the commercial preparation of FDOPA that obtained a marketing authorisation in France in November 2006 (which is currently recognised by several other EU countries), is a solution for injection. The activity available at time of administration ranges from 0.1 GBq to 0.8 GBq per vial. The half-life of the radionuclide is 109.8 min with emission of positron radiation (Emax: 0.633 MeV) followed by photon annihilation radiations of 0.511 MeV.

Class (Stereo):
CHEMICAL (RACEMIC)



Lofexidine is newly FDA approved in the United States under the brand name LUCEMYRA for the treatment of opioid withdrawal symptoms in adults. Lofexidine acts as an agonist to α2 adrenergic receptors. These receptors inhibit adenylyl cyclase activity, leading to the inhibition of the second messenger, cyclic adenosine monophosphate (cAMP). The inhibition of cAMP leads to potassium efflux through calcium-activated channels, blocking calcium ions from entering the nerve terminal, resulting in suppression of neural firing, inhibition of norepinephrine release. Lofexidine replaces the opioid-driven inhibition of cAMP production and moderating the symptoms of opioid withdrawal.
Tafenoquine is anti-malaria drug originated in Walter reed army institute of research and developed by GSK and 60 Degrees Pharmaceuticals. In 2018 United States Food and Drug Administration (FDA) approved single dose tafenoquine for the radical cure (prevention of relapse) of Plasmodium vivax malaria. Tafenoquine, an 8-aminoquinoline antimalarial, is active against all the stages of Plasmodium species that include the hypnozoite (dormant stage) in the liver. Studies in vitro with the erythrocytic forms of Plasmodium falciparum suggest that tafenoquine may exert its effect by inhibiting hematin polymerization and inducing apoptotic like death of the parasite. In addition to its effect on the parasite, tafenoquine causes red blood cell shrinkage in vitro. Tafenoquine is active against pre-erythrocytic (liver) and erythrocytic (asexual) forms as well as gametocytes of Plasmodium species that include P. falciparum and P. vivax. The activity of tafenoquine against the pre-erythrocytic liver stages of the parasite, prevents the development of the erythrocytic forms of the parasite.