{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
dopamine
to a specific field?
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
AstraZeneca R&D Charnwood (formerly Astra Charnwood, a subsidiary of AstraZeneca) was developing sibenadet (Viozan, AR-C68397AA) for the potential treatment of chronic obstructive pulmonary disease and asthma. Sibenadet is a dual D2 dopamine receptor, beta2-adrenoceptor agonist that combines bronchodilator activity with the sensory afferent modulating effects associated with D2-receptor agonism. Development of sibenadet has been discontinued due to disappointing efficacy findings.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Radafaxine (GW353162, ( )-(2S,3S)-2-(3-chlorophenyl-3,5,5-trimethyl-2-morphinol) or S,S-hydroxybupropion) is an active metabolite of bupropion. It acts as an inhibitor of the dopamine transporter. Radafaxine was investigated for the treatment of depression however, development was discontinued.
Status:
Investigational
Source:
INN:mazapertine [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Mazapertine (RWJ-37796) is an arylpiperazine antipsychotic with high affinity to dopamine D2 and D3, serotonin 5-HT1A and alpha 1A-adrenergic receptors. It was being studied in the treatment of schizophrenia.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ciladopa, is a troponylpiperazine derivative and dopamine agonist that has been shown to influence dopaminergic mechanisms in animals. Preclinical pharmacological studies have suggested that it has antiparkinsonian activity similar to that of bromocriptine but without many of the troublesome side effects. Unfortunately in some clinical trials no significant differences was found among the treatment groups and placebo.
Status:
Investigational
Source:
NCT03209830: Phase 2 Interventional Completed Aneurysmal Subarachnoid Hemorrhage
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
PNU-96391A (known as OSU6162) is a weak dopamine (DA) D(2) receptor antagonist with behavioral stabilizing properties. OSU6162 seem to act as stabilizers not only on dopaminergic, but also on serotonergic brain signaling (partial agonist on 5-HT2A receptor). OSU6162 in a phase II European clinical trial in treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. One of the isomer of OSU 6162, has promise for treating Parkinson's disease, Huntington's disease and schizophrenia, but both enantiomers of OSU 6162 had dual effects on behavior, stimulating locomotor activity in 'low activity' animals and inhibiting locomotor activity in 'high activity' animals.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Quinpirole (LY 171,555) is a psychoactive drug and research chemical which acts as a selective D2 and D3 receptor agonist. Quinpirole is the most widely used D2 agonist in in vivo and in vitro studies. Specific quinpirole binding in rat brain was saturable, and dependent on temperature, membrane concentration, sodium concentration and guanine nucleotides. Saturation analysis revealed high affinity binding characteristics (KD = 2.3 nM) which were confirmed by association-dissociation kinetics. The regional distribution of [3H]quinpirole binding sites roughly paralleled the distribution of [3H]spiperone binding sites, with greatest densities present in the striatum, nucleus accumbens and olfactory tubercles. A variety of drugs, most notably monoamine oxidase inhibitors (MAOls), inhibit the binding of [3H]quinpirole, but not [3H]spiperone or [3H](-)N-n-Propylnorapomorphine, in rat striatal membranes by a mechanism that does not appear to involve the enzymatic activity of MAO. Clinically antidepressant MAOIs exhibited selectivity between sites labeled by [3H]quinpirole and [3H]spiperone as did a number of structurally related propargylamines and N-acylethylenediamine derivatives and other drugs such as debrisoquin and phenylbiguanide. Quinpirole has been shown to increase locomotion and sniffing behavior in mice and induces compulsive behavior symptomatic of obsessive compulsive disorder in rats.
Status:
Investigational
Source:
NCT04003948: Phase 2 Interventional Recruiting Drug Dependence
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Status:
Investigational
Source:
INN:diclofensine [INN]
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Diclofensine is an antidepressant with equipotent inhibitive effects on the neuronal uptake of norepinephrine (NE), serotonin, and dopamine. It is devoid of monoamine-releasing or monoaminoxidase-inhibiting properties. Diclofensine was found to be an effective antidepressant in human trials, with relatively few side effects, but was ultimately dropped from clinical development.
Status:
Investigational
Source:
INN:neflumozide [INN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Neflumozide is an antipsychotic.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Pinoxepin belongs to the dibenzoxepine series of drugs which are characterized by a 6-7-6 tricyclic nuclear structure. Clinical studies indicated that pinoxepin was a potent antipsychotic-sedative equally effective to chlorpromazine and thioridazine. Pinoxepin in studies with chronic schizophrenic patients displayed useful effects on behavior without unduly prominent side effects. In doses above 300 mg seizures are reported and more frequent changes in liver-function tests were noted than with standard drug, but below 300 mg pinoxepin was found to have side effects similar to chlorpromazine and marked sedative effects.