{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_relationships_comments in Relationship Comments (approximate match)
Status:
Investigational
Source:
NCT00397943: Phase 2 Interventional Completed Tuberculosis
(2006)
Source URL:
Class:
STRUCTURALLY DIVERSE
Status:
Other
Class:
STRUCTURALLY DIVERSE
Status:
Other
Class:
STRUCTURALLY DIVERSE
Status:
US Approved Rx
(2010)
Source:
ANDA091629
(2010)
Source URL:
First approved in 1995
Source:
NDA020386
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Losartan is a selective, competitive angiotensin II receptor type 1 (AT1) antagonist. Losartant is recommended as one of several preferred agents for the initial management of hypertension. Administration of losartan reduces the risk of stroke in patients with hypertension and left ventricular hypertrophy. Losartan is indicated for the treatment of diabetic nephropathy with an elevated serum creatinine and proteinuria in patients with type 2 diabetes and a history of hypertension.
Status:
Other
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Previously Marketed
Source:
BAYCOL by BAYER PHARMS
(1997)
Source URL:
First approved in 1997
Source:
BAYCOL by BAYER PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cerivastatin (BAYCOL®) is a competitive inhibitor of HMG-CoA reductase, which is responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) to mevalonate, a precursor of sterols, including cholesterol. The inhibition of cholesterol biosynthesis by cerivastatin reduces the level of cholesterol in hepatic cells, which stimulates the synthesis of low-density lipoprotein (LDL) receptors, thereby increasing the uptake of cellular LDL particles. The end result of these biochemical processes is a reduction of the plasma cholesterol concentration. On August 8, 2001 the U.S. Food and Drug Administration (FDA) announced that Bayer Pharmaceutical Division voluntarily withdrew BAYCOL® from the U.S. market, due to reports of fatal rhabdomyolysis, a severe adverse reaction from this cholesterol-lowering (lipid-lowering) product. It has also been withdrawn from the Canadian market.