U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 1126 results


Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.
Clindamycin phosphate is the prodrug of clindamycin with no antimicrobial activity in vitro but can be rapidly converted in vivo to the parent drug, clindamycin, by phosphatase ester hydrolysis. It is indicated in the treatment of serious infections caused by susceptible anaerobic bacteria: Lower respiratory tract infections including pneumonia, empyema, and lung abscess caused by anaerobes; Skin and skin structure infections; Gynecological infections including endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis, and postsurgical vaginal cuff infection caused by susceptible anaerobes; Intra-abdominal infections; Septicemia; Bone and joint infections. Orally and parenterally administered clindamycin has been associated with severe colitis, which may end fatally. Abdominal pain, gastrointestinal disturbances, gram-negative folliculitis, eye pain and contact dermatitis have also been reported in association with the use of topical formulations of clindamycin. Clindamycin has been shown to have neuromuscular blocking properties that may enhance the action of other neuromuscular blocking agents
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Nortriptyline is a second-generation tricyclic antidepressant (TCA) marketed as the hydrochloride salt under the trade names Sensoval, Aventyl, Pamelor, Norpress, Allegron, Noritren and Nortrilen. Nortriptyline is used in the treatment of depression and childhood nocturnal enuresis. Its off-label uses include treatment of postherpetic neuralgia, angioedema and smoking Cessation, and attention deficit hyperactivity disorder in some neurological disorders. It is believed that nortriptyline either inhibits the reuptake of the neurotransmitter serotonin at the neuronal membrane or acts at beta-adrenergic receptors. Nortriptyline is US FDA-approved for the treatment of major depression. In the United Kingdom, it may also be used for treating nocturnal enuresis, with courses of treatment lasting no more than three months. The most common side effects include dry mouth, sedation, constipation, and increased appetite, mild blurred vision, tinnitus, occasionally hypomania or mania. An occasional side effect is a rapid or irregular heartbeat. Alcohol may exacerbate some of its side effects. However, fewer and milder side effects occur with nortriptyline than tertiary tricyclic antidepressants such as imipramine and amitriptyline. For this reason, nortriptyline is preferred to other tricyclic antidepressants, particularly with older adults, which also improves compliance.
Triamterene, a relatively weak, potassium-sparing diuretic and antihypertensive, is used in the management of hypokalemia. Triamterene inhibits the epithelial sodium channels on principal cells in the late distal convoluted tubule and collecting tubule, which are responsible for 1-2% of total sodium reabsorption. As sodium reabsorption is inhibited, this increases the osmolarity in the nephron lumen and decreases the osmolarity of the interstitium. Since sodium concentration is the main driving force for water reabsorption, triamterene can achieve a modest amount of diuresis by decreasing the osmotic gradient necessary for water reabsorption from lumen to interstitium. Triamterene also has a potassium-sparing effect. Normally, the process of potassium excretion is driven by the electrochemical gradient produced by sodium reabsorption. As sodium is reabsorbed, it leaves a negative potential in the lumen, while producing a positive potential in the principal cell. This potential promotes potassium excretion through apical potassium channels. By inhibiting sodium reabsorption, triamterene also inhibits potassium excretion.Triamterene is used for the treatment of edema associated with congestive heart failure, cirrhosis of the liver, and the nephrotic syndrome; also in steroid-induced edema, idiopathic edema, and edema due to secondary hyperaldosteronism. Triamterene is maeketed under the trade name Dyrenium.
Amitriptyline is a derivative of dibenzocycloheptadiene and a tricyclic antidepressant (TCA) and is mainly used to treat symptoms of depression. It works on the central nervous system (CNS) by inhibiting the membrane pump mechanism responsible for uptake of norepinephrine and serotonin in adrenergic and serotonergic neurons. Amitriptyline has been frequently used as an active comparator in clinical trials on newer antidepressants. It is rarely used as a first-line antidepressant nowadays due to its high degree of toxicity in overdose and generally poorer tolerability than the newer antidepressants.
Sulfamethoxazole is a synthetic antibacterial drug,which is used in combination with trimethoprim (Bactrim, Septra) for the treatment or prevention of infections that are proven or strongly suspected to be caused by bacteria. Sulfamethoxazole acts by inhibiting folic acid synthesis via enzyme called dihydropteroate synthase.
Vinblastine is a Vinca alkaloid obtained from the Madagascar periwinkle plant. Vinca alkaloids were found out in the 1950's by Canadian scientists, Robert Noble and Charles Beer for the first time. Medicinal applications of this plant lead to the monitoring of these compounds for their hypoglycemic activity, which is of little importance compared to their cytotoxic effects. They have been used to treat diabetes, high blood pressure and the drugs have even been used as disinfectants. Nevertheless, the vinca alkaloids are so important for being cancer fighters. The mechanism of action of vinblastine sulfate has been related to the inhibition of microtubule formation in the mitotic spindle, resulting in an arrest of dividing cells at the metaphase stage. Vinblastine is an antineoplastic agent used to treat Hodgkin's disease, non-Hodgkin's lymphomas, mycosis fungoides, cancer of the testis, Kaposi's sarcoma, Letterer-Siwe disease, as well as other cancers.
Trifluoperazine (Eskazinyl, Eskazine, Jatroneural, Modalina, Stelazine, Terfluzine, Trifluoperaz, Triftazin) is a typical antipsychotic of the phenothiazine chemical class used for the short-term treatment of certain types of anxiety. Trifluoperazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. The primary application of trifluoperazine is for schizophrenia. Other official indications may vary country by country, but generally, it is also indicated for use in agitation and patients with behavioral problems, severe nausea, and vomiting as well as severe anxiety. Trials have shown a moderate benefit of this drug in patients with borderline personality disorder. A 2004 meta-analysis of the studies on trifluoperazine found that it is more likely than placebo to cause extrapyramidal side effects such as akathisia, dystonia, and Parkinsonism. It is also more likely to cause somnolence and anticholinergic side effects such as red-eye and xerostomia (dry mouth).
Vancomycin is a branched tricyclic glycosylated nonribosomal peptide produced by the fermentation of the Actinobacteria species Amycolatopsis orientalis (formerly Nocardia orientalis). Vancomycin became available for clinical use >50 years ago. It is often reserved as the "drug of last resort", used only after treatment with other antibiotics had failed. Vancomycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections: Listeria monocytogenes, Streptococcus pyogenes, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus agalactiae, Actinomyces species, and Lactobacillus species. The combination of vancomycin and an aminoglycoside acts synergistically in vitro against many strains of Staphylococcus aureus, Streptococcus bovis, enterococci, and the viridans group streptococci. The bactericidal action of vancomycin results primarily from inhibition of cell-wall biosynthesis. Specifically, vancomycin prevents the incorporation of N-acetylmuramic acid (NAM)- and N-acetylglucosamine (NAG)-peptide subunits from being incorporated into the peptidoglycan matrix; which forms the major structural component of Gram-positive cell walls. The large hydrophilic molecule is able to form hydrogen bond interactions with the terminal D-alanyl-D-alanine moieties of the NAM/NAG-peptides. Normally this is a five-point interaction. This binding of vancomycin to the D-Ala-D-Ala prevents the incorporation of the NAM/NAG-peptide subunits into the peptidoglycan matrix. In addition, vancomycin alters bacterial-cell-membrane permeability and RNA synthesis. There is no cross-resistance between vancomycin and other antibiotics. Vancomycin is not active in vitro against gram-negative bacilli, mycobacteria, or fungi.