U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 61 - 70 of 13311 results


Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Perampanel (trade name Fycompa) is an antiepileptic drug developed by Eisai Co. that acts as a selective non-competitive antagonist of AMPA receptors, the major subtype of ionotropic glutamate receptors. Although the mechanism of action through which perampanel exerts its antiepileptic effect has not been fully elucidated, this agent antagonizes the AMPA subtype of the excitatory glutamate receptor found on postsynaptic neurons in the central nervous system (CNS). This antagonistic action prevents AMPA receptor activation by glutamate and results in the inhibition of neuronal excitation, repetitive neuronal firing, and the stabilization of hyper-excited neural membranes. Glutamate, the primary excitatory neurotransmitter in the CNS, plays an important role in various neurological disorders caused by neuronal hyperexcitation. The drug is currently approved, for the control of partial-onset seizures, in those of both sexes who suffer from epilepsy and who are 12 years of age and older, by the Food and Drug Administration. Perampanel is also approved for the treatment of primary generalized tonic-clonic seizures in patients with epilepsy aged 12 years and older. It is designated as a Schedule III controlled substance by the Drug Enforcement Administration. Perampanel has been studied in other clinical indications including Parkinson's disease.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Carfilzomib is an epoxomicin derivate with potential antineoplastic activity. Kyprolis (carfilzomib's trade name) is a proteasome inhibitor that is indicated for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy as a single agent or in combination with dexamethasone or with lenalidomide plus dexamethasone. Carfilzomib is made up of four modified peptides. It irreversibly and selectively binds to N-terminal threonine-containing active sites of the 20S proteasome, the proteolytic core particle within the 26S proteasome. This 20S core has 3 catalytic active sites: the chymotrypsin, trypsin, and caspase-like sites. Inhibition of the chymotrypsin-like site by carfilzomib (β5 and β5i subunits) is the most effective target in decreasing cellular proliferation, ultimately resulting in cell cycle arrest and apoptosis of cancerous cells. At higher doses, carfilzomib will inhibit the trypsin-and capase-like sites. Inhibition of proteasome-mediated proteolysis results in an accumulation of polyubiquinated proteins, which may lead to cell cycle arrest, induction of apoptosis, and inhibition of tumor growth.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Benznidazole is an antiparasitic medication used in first-line treatment of Chagas disease. Benznidazole is a nitroimidazole antiparasitic with good activity against acute infection with Trypanosoma cruzi, commonly referred to as Chagas disease. Like other nitroimidazoles, benznidazole's main mechanism of action is to generate radical species which can damage the parasite's DNA or cellular machinery. Under anaerobic conditions, the nitro group of nitroimidazoles is believed to be reduced by the pyruvate:ferredoxin oxidoreductase complex to create a reactive nitro radical species. The nitro radical can then either engage in other redox reactions directly or spontaneously give rise to a nitrite ion and imidazole radical instead. In mammals, the principal mediators of electron transport are NAD+/NADH and NADP+/NADPH, which have a more positive reduction potential and so will not reduce nitroimidazoles to the radical form. This limits the spectrum of activity of nitroimidazoles so that host cells and DNA are not also damaged. This mechanism has been well-established for 5-nitroimidazoles such as metronidazole, but it is unclear if the same mechanism can be expanded to 2-nitroimidazoles (including benznidazole). In the presence of oxygen, by contrast, any radical nitro compounds produced will be rapidly oxidized by molecular oxygen, yielding the original nitroimidazole compound and a superoxide anion in a process known as "futile cycling". In these cases, the generation of superoxide is believed to give rise to other reactive oxygen species. The degree of toxicity or mutagenicity produced by these oxygen radicals depends on cells' ability to detoxify superoxide radicals and other reactive oxygen species. In mammals, these radicals can be converted safely to hydrogen peroxide, meaning benznidazole has very limited direct toxicity to human cells. In Trypanosoma species, however, there is a reduced capacity to detoxify these radicals, which results in damage to the parasite's cellular machinery. Benznidazole has a significant activity during the acute phase of Chagas disease, with a therapeutical success rate up to 80%. Its curative capabilities during the chronic phase are, however, limited. Some studies have found parasitologic cure (a complete elimination of T. cruzi from the body) in pediatric and young patients during the early stage of the chronic phase, but overall failure rate in chronically infected individuals is typically above 80%. However, some studies indicate treatment with benznidazole during the chronic phase, even if incapable of producing parasitologic cure, because it reduces electrocardiographic changes and a delays worsening of the clinical condition of the patient. Side effects tend to be common and occur more frequently with increased age. The most common adverse reactions associated with benznidazole are allergic dermatitis and peripheral neuropathy. It is reported that up to 30% of people will experience dermatitis when starting treatment. Benznidazole may cause photosensitization of the skin, resulting in rashes. Rashes usually appear within the first 2 weeks of treatment and resolve over time. In rare instances, skin hypersensitivity can result in exfoliative skin eruptions, edema, and fever. Peripheral neuropathy may occur later on in the treatment course and is dose-dependent. Other adverse reactions include anorexia, weight loss, nausea, vomiting, insomnia, and dyslexia, and bone marrow suppression. Gastrointestinal symptoms usually occur during the initial stages of treatment and resolves over time. Bone marrow suppression has been linked to the cumulative dose exposure.
Crizotinib (trade name Xalkori, Pfizer, Inc.) is an anti cancer drug approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors are anaplastic lymphoma kinase (ALK)-positive as detected by an FDA-approved test. Crizotinib is an inhibitor of receptor tyrosine kinases including ALK, Hepatocyte Growth Factor Receptor (HGFR, c-Met), ROS1 (c-ros), and Recepteur d’Origine Nantais (RON). Common adverse reactions in clinical trials with crizotinib, occurring at an incidence of 25% or higher, included visual disorders, nausea, diarrhea, vomiting, constipation, edema, elevated transaminases, and fatigue. Crizotinib is currently under investigational study for use in treatment of Uveal Melanoma.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Icatibant (trade name Firazyr) is a synthetic peptidomimetic drug consisting of ten amino acids, and acts as an effective and specific antagonist of bradykinin B2 receptors. It has been approved in the EU for use in hereditary angioedema, and is under investigation for a number of other conditions in which bradykinin is thought to play a significant role. Icatibant currently has orphan drug status in the United States and FDA approved on August 25, 2011. Icatibant inhibits bradykinin from binding the B2 receptor and thereby treats the clinical symptoms of an acute, episodic attack of HAE.
Ruxolitinib (trade names Jakafi and Jakavi, by Incyte Pharmaceuticals and Novartis) is a drug for the treatment of intermediate or high-risk myelofibrosis, a type of myeloproliferative disorder that affects the bone marrow. It is also being investigated for the treatment of other types of cancer (such as lymphomas and pancreatic cancer), for polycythemia vera, for plaque psoriasis, and for alopecia areata. Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) known to be associated with dysregulated JAK1 and JAK2 signaling. Ruxolitinib is a Janus-associated kinase (JAK) inhibitor with potential antineoplastic and immunomodulating activities. Ruxolitinib specifically binds to and inhibits protein tyrosine kinases JAK 1 and 2, which may lead to a reduction in inflammation and an inhibition of cellular proliferation. The JAK-STAT (signal transducer and activator of transcription) pathway plays a key role in the signaling of many cytokines and growth factors and is involved in cellular proliferation, growth, hematopoiesis, and the immune response; JAK kinases may be upregulated in inflammatory diseases, myeloproliferative disorders, and various malignancies. In a mouse model of JAK2V617F-positive MPN, ruxolitinib prevented splenomegaly, preferentially decreased JAK2V617F mutant cells in the spleen and decreased circulating inflammatory cytokines (eg, TNF-α, IL-6). Ruxolitinib was initially synthesized at Incyte Corporation that acquired the rights to develop and commercialize the drug in US. Incyte amended its Collaboration and License Agreement with Novartis, granting Novartis exclusive research, development and commercialization rights for ruxolitinib outside the U.S.
Ticagrelor (known trade names Brilinta, Brilique and Possia) is a P2Y12 platelet inhibitor. Brilinta has been approved by the US Food and Drug administration (FDA) in 2011 and is indicated to reduce the rate of cardiovascular death, myocardial infarction, and stroke in patients with acute coronary syndrome (ACS) or a history of myocardial infarction. Brilinta also reduces the rate of stent thrombosis in patients who have been stented for treatment of ACS. Ticagrelor and its major metabolite reversibly interact with the platelet P2Y12 ADP-receptor to prevent signal transduction and platelet activation. Ticagrelor and its active metabolite are approximately equipotent. In vitro metabolism studies demonstrate that ticagrelor and its major active metabolite are weak inhibitors of CYP3A4, potential activators of CYP3A5 and inhibitors of the P-gp transporter. Most common adverse reactions are bleeding 12% and dyspnea 14%.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Rivaroxaban (trade name Xarelto) is an oral anticoagulant. It is the first available orally active direct factor Xa inhibitor. Upon oral administration, rivaroxaban selectively binds to both free factor Xa and factor Xa bound in the prothrombinase complex. This interferes with the conversion of prothrombin (factor II) to thrombin and eventually prevents the formation of cross-linked fibrin clots. Rivaroxaban does not affect existing thrombin levels. Activation of factor X to factor Xa (FXa) via the intrinsic and extrinsic pathways plays a central role in the cascade of blood coagulation. Xarelto is indicated to reduce the risk of stroke and systemic embolism in patients with nonvalvular atrial fibrillation, treatment and prophylaxis of deep vein thrombosis (DVT) which may lead to PE in patients undergoing knee or hip replacement surgery, pulmonary embolism (PE) and for the reduction in the risk of recurrence of deep vein thrombosis and of pulmonary embolism following initial 6 months treatment for DVT and/or PE.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Deferiprone (trade name Ferriprox) is an iron chelator indicated for the treatment of patients with transfusional iron overload due to thalassemia syndromes when current chelation therapy is inadequate. Deferiprone is an orally bioavailable bidentate ligand with iron chelating activity. Deferiprone binds to iron in a 3:1 (ligand:iron) molar ratio. By binding to iron, deferiprone is able to remove excess iron from the body. All the adverse effects of deferiprone are considered reversible, controllable and manageable. These include agranulocytosis with frequency of about 0.6%, neutropenia 6%, musculoskeletal and joint pains 15%, gastrointestinal complains 6% and zinc deficiency 1%.

Class (Stereo):
CHEMICAL (ACHIRAL)



Clobazam belongs to the 1,5-benzodiazepine class of drugs with antiepileptic properties. It has been used to treat anxiety and epilepsy since 1970s. In the US clobazam was approved for marketing in October of 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome. It is also approved for adjunctive therapy for epilepsy in patients who have not responded to first-line drugs and in children who are refractory to first-line drugs. The mechanism of action for clobazam is not fully understood but is thought to involve what is known as potentiation of GABAergic neurotransmission resulting from binding at a benzodiazepine site at the GABA(A) receptor. Possible side effects: constipation, fever, drowsiness, sedation, ataxia, aggressive behavior, lethargy, drooling, and irritability. Other side effects include: urinary tract infection, pneumonia, cough, dysphagia, dysarthria, bronchitis, insomnia, fatigue, decreased appetite, and increased appetite.