U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Hydrocortisone is the main glucocorticoid secreted by the adrenal cortex. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Topical hydrocortisone is used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Hydrocortisone binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In other words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. For the relief of the inflammatory and pruritic manifestations of corticosteroid-responsive dermatoses. Also used to treat endocrine (hormonal) disorders (adrenal insufficiency, Addisons disease). Hydrocortisone is also used to treat many immune and allergic disorders, such as arthritis, lupus, severe psoriasis, severe asthma, ulcerative colitis, and Crohn's disease.
Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Phenylephrine is a powerful vasoconstrictor. It is used as a nasal decongestant and cardiotonic agent. Phenylephrine is a postsynaptic α1-receptor agonist with little effect on β-receptors of the heart. Parenteral administration of phenylephrine causes a rise in systolic and diastolic pressures, a slight decrease in cardiac output, and a considerable increase in peripheral resistance; most vascular beds are constricted, and renal, splanchnic, cutaneous, and limb blood flows are reduced while coronary blood flow is increased. Phenelephrine also causes pulmonary vessel constriction and subsequent increase in pulmonary arterial pressure. Vasoconstriction in the mucosa of the respiratory tract leads to decreased edema and increased drainage of sinus cavities. In general, α1-adrenergic receptors mediate contraction and hypertrophic growth of smooth muscle cells. α1-receptors are 7-transmembrane domain receptors coupled to G proteins, Gq/11. Three α1-receptor subtypes, which share approximately 75% homology in their transmembrane domains, have been identified: α1A (chromosome 8), α1B (chromosome 5), and α1D (chromosome 20). Phenylephrine appears to act similarly on all three receptor subtypes. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of the α1-receptor activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction. Phenylephrine produces its local and systemic actions by acting on α1-adrenergic receptors peripheral vascular smooth muscle. Stimulation of the α1-adrenergic receptors results in contraction arteriolar smooth muscle in the periphery. Phenylephrine decreases nasal congestion by acting on α1-adrenergic receptors in the arterioles of the nasal mucosa to produce constriction; this leads to decreased edema and increased drainage of the sinus cavities. Phenylephrine is mainly used to treat nasal congestion, but may also be useful in treating hypotension and shock, hypotension during spinal anaesthesia, prolongation of spinal anaesthesia, paroxysmal supraventricular tachycardia, symptomatic relief of external or internal hemorrhoids, and to increase blood pressure as an aid in the diagnosis of heart murmurs.
Cortisone is a hormone that is FDA approved for the treatment of primary and secondary adrenocortical deficiency, rheumatic disorders, psoriasis, exfoliative dermatitis, bronchial asthma, allergic conjunctivitis, hemolytic anemia, enteritis, tuberculosis, trichnosis. Cortisone acetate binds to the cytosolic glucocorticoid receptor. After binding the receptor, the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. Common adverse reactions include convulsions, increased intracranial pressure with papilledema, vertigo, headache, psychic disturbances, hirsuitism, glaucoma, exophthalmos. Aminoglutethimide may lead to a loss of corticosteroid-induced adrenal suppression. Co-administration of corticosteroids and warfarin usually results in inhibition of response to warfarin, although there have been some conflicting reports. Cortisone is a natural steroid hormone. Its sulfate analog has been detected in in umbilical vein blood fetus plasma between 19 and 32 weeks of gestation with a significant increase at 29-30 weeks and in amniotic fluid. Base on the experiments with rats it was suggested that cortisone sulfate in mammals could be hydrolyzed enzymatically liberating sulfate ions from cortisone. Cortisone sulfate has been proposed for use as one of the glycosaminoglycan compound materials in a cartilage prosthesis and biological nasal bridge implant manufacture as well as auxiliary agent in powder aerosol composition for use in baby powder, dry shampoo, water-eczema remedy and antiperspirant.
Status:
Possibly Marketed Outside US
Source:
Japan:Anecortave Acetate
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Anecortave is a novel angiogenesis inhibitor used in the treatment of the exudative (wet) form of age-related macular degeneration. It will be marketed by Alcon as anecortave acetate (AA) for depot suspension under the trade name Retaane. In 2007 they received their letter of approval for Retaane’s indication to treat wet age-related macular degeneration (AMD), but final approval would require the completion of an additional clinical study. As a result, the Anecortave Acetate Risk-Reduction Trial (AART) was continued to be supported by Alcon. This study looked at the efficacy of Retaane to reduce the progression of the dry from of AMD to the wet-form. In 2008, Alcon Inc. announced they were terminating the development of anecortave acetate for the prevention of developing sight-threatening choroidal neovascularization secondary to age-related macular degeneration. In 2009, Alcon Inc. announced they would terminate the development of the drug for the reducing intraocular pressure associated with glaucoma. Currently, anecortave acetate is not on the market or being made for therapeutic use by Alcon Inc.[7] This could be due to the lack of efficacy of clinical trials with anecortave acetate or because of newer more efficacious products that are currently on the market. Anecortave acetate functions as an antiangiogenic agent, inhibiting blood vessel growth by decreasing extracellular protease expression and inhibiting endothelial cell migration. Its angiostatic activity does not seem to be mediated through any of the commonly known pharmacological receptors. RETAANE blocks signals from multiple growth factors because it acts downstream and independent of the initiating angiogenic stimuli and inhibits angiogenesis subsequent to the angiogenic stimulation. Recently was discovered, that phosphodiesterase 6-delta (PDE6D) was a molecular binding partner of AA and this provided insight into the role of this drug candidate in treating glaucoma.
Gentamicin C1 is a part of gentamicin C complex, containing gentamicin C1, gentamicin C1a, and gentamicin C2 which compose approximately 80% of gentamicin and have been found to have the highest antibacterial activity. Commercial gentamicin C is a mixture of gentamicin C1, C1a, and C2. Gentamicin C1 has a methyl group in the 6' position of the 2-amino-hexose ring and is N methylated at the same position. Gentamicin is a broad spectrum aminoglycoside antibiotic. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like gentamicin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically gentamicin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Gentamicin complex is used for treatment of serious infections caused by susceptible strains of the following microorganisms: P. aeruginosa, Proteus species (indole-positive and indole-negative), E. coli, Klebsiella-Enterobactor-Serratia species, Citrobacter species and Staphylococcus species (coagulase-positive and coagulase-negative).