U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 681 - 690 of 824 results

Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Betamethasone and its derivatives, betamethasone sodium phosphate and betamethasone acetate, are synthetic glucocorticoids. Used for its antiinflammatory or immunosuppressive properties, betamethasone is combined with a mineralocorticoid to manage adrenal insufficiency and is used in the form of betamethasone benzoate, betamethasone dipropionate, or betamethasone valerate for the treatment of inflammation due to corticosteroid-responsive dermatoses. Betamethasone and clotrimazole are used together to treat cutaneous tinea infections. Betamethasone is a glucocorticoid receptor agonist. This leads to changes in genetic expression once this complex binds to the GRE. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Betamethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin.Betamethasone is used for: treating certain conditions associated with decreased adrenal gland function. It is used to treat severe inflammation caused by certain conditions, including severe asthma, severe allergies, rheumatoid arthritis, ulcerative colitis, certain blood disorders, lupus, multiple sclerosis, and certain eye and skin conditions.
Dexamethasone is an anti-inflammatory agent that is FDA approved for the treatment of many conditions, including rheumatic problems, a number of skin diseases, severe allergies, asthma, chronic obstructive lung disease, croup, brain swelling and others. Dexamethasone is a glucocorticoid agonist. Unbound dexamethasone crosses cell membranes and binds with high affinity to specific cytoplasmic glucocorticoid receptors. Adverse reactions are: Glaucoma with optic nerve damage, visual acuity and field defects; cataract formation; secondary ocular infection following suppression of host response; and perforation of the globe may occur; muscle weakness; osteoporosis and others. Aminoglutethimide may diminish adrenal suppression by corticosteroids. Macrolide antibiotics have been reported to cause a significant decrease in corticosteroid clearance.
Fluorescein is a synthetic organic compound available as a dark orange/red powder slightly soluble in water and alcohol. It is widely used as a fluorescent tracer for many applications. Fluorescein was first synthesized by Adolf von Baeyer in 1871. It can be prepared from phthalic anhydride and resorcinol in the presence of zinc chloride via the Friedel-Crafts reaction. Fuorescein sodium is used intravenously in diagnostic fluorescein angiography or angioscopy of the retina and iris vasculature. Fluorescein sodium responds to electromagnetic radiation and light between the wavelengths of 465-490 nm and fluoresces, i.e., emits light at wavelengths of 520-530 nm. Thus, the hydrocarbon is excited by blue light and emits light that appears yellowish-green. Following intravenous injection of fluorescein sodium in an aqueous solution, the unbound fraction of the fluorescein can be excited with a blue light flash from a fundus camera as it circulates through the ocular vasculature, and the yellowish green fluorescence of the dye is captured by the camera. In the fundus, the fluorescence of the dye demarcates the retinal and/or choroidal vasculature under observation, distinguishing it from adjacent areas/structures. Topical, oral, and intravenous use of fluorescein can cause adverse reactions, including nausea, vomiting, hives, acute hypotension, anaphylaxis and related anaphylactoid reaction, causing cardiac arrest and sudden death due to anaphylactic shock. The most common adverse reaction is nausea, due to a difference in the pH from the body and the pH of the sodium fluorescein dye; a number of other factors however, are considered contributors as well. The nausea usually is transient and subsides quickly. Intravenous use has the most reported adverse reactions, including sudden death, but this may reflect greater use rather than greater risk. Both oral and topical uses have been reported to cause anaphylaxis, including one case of anaphylaxis with cardiac arrest (resuscitated) following topical use in an eye drop. Reported rates of adverse reactions vary from 1% to 6%. The higher rates may reflect study populations that include a higher percentage of persons with prior adverse reactions. The risk of an adverse reaction is 25 times higher if the person has had a prior adverse reaction. The risk can be reduced with prior (prophylactic) use of antihistamines and prompt emergency management of any ensuing anaphylaxis. A simple prick test may help to identify persons at greatest risk of adverse reaction
Fluorescein is a synthetic organic compound available as a dark orange/red powder slightly soluble in water and alcohol. It is widely used as a fluorescent tracer for many applications. Fluorescein was first synthesized by Adolf von Baeyer in 1871. It can be prepared from phthalic anhydride and resorcinol in the presence of zinc chloride via the Friedel-Crafts reaction. Fuorescein sodium is used intravenously in diagnostic fluorescein angiography or angioscopy of the retina and iris vasculature. Fluorescein sodium responds to electromagnetic radiation and light between the wavelengths of 465-490 nm and fluoresces, i.e., emits light at wavelengths of 520-530 nm. Thus, the hydrocarbon is excited by blue light and emits light that appears yellowish-green. Following intravenous injection of fluorescein sodium in an aqueous solution, the unbound fraction of the fluorescein can be excited with a blue light flash from a fundus camera as it circulates through the ocular vasculature, and the yellowish green fluorescence of the dye is captured by the camera. In the fundus, the fluorescence of the dye demarcates the retinal and/or choroidal vasculature under observation, distinguishing it from adjacent areas/structures. Topical, oral, and intravenous use of fluorescein can cause adverse reactions, including nausea, vomiting, hives, acute hypotension, anaphylaxis and related anaphylactoid reaction, causing cardiac arrest and sudden death due to anaphylactic shock. The most common adverse reaction is nausea, due to a difference in the pH from the body and the pH of the sodium fluorescein dye; a number of other factors however, are considered contributors as well. The nausea usually is transient and subsides quickly. Intravenous use has the most reported adverse reactions, including sudden death, but this may reflect greater use rather than greater risk. Both oral and topical uses have been reported to cause anaphylaxis, including one case of anaphylaxis with cardiac arrest (resuscitated) following topical use in an eye drop. Reported rates of adverse reactions vary from 1% to 6%. The higher rates may reflect study populations that include a higher percentage of persons with prior adverse reactions. The risk of an adverse reaction is 25 times higher if the person has had a prior adverse reaction. The risk can be reduced with prior (prophylactic) use of antihistamines and prompt emergency management of any ensuing anaphylaxis. A simple prick test may help to identify persons at greatest risk of adverse reaction
Dexamethasone is an anti-inflammatory agent that is FDA approved for the treatment of many conditions, including rheumatic problems, a number of skin diseases, severe allergies, asthma, chronic obstructive lung disease, croup, brain swelling and others. Dexamethasone is a glucocorticoid agonist. Unbound dexamethasone crosses cell membranes and binds with high affinity to specific cytoplasmic glucocorticoid receptors. Adverse reactions are: Glaucoma with optic nerve damage, visual acuity and field defects; cataract formation; secondary ocular infection following suppression of host response; and perforation of the globe may occur; muscle weakness; osteoporosis and others. Aminoglutethimide may diminish adrenal suppression by corticosteroids. Macrolide antibiotics have been reported to cause a significant decrease in corticosteroid clearance.
Probenecid is the prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Probenecid is used for treatment of the hyperuricemia associated with gout and gouty arthritis. Probenecid is a uricosuric and renal tubular blocking agent. It inhibits the tubular reabsorption of urate, thus increasing the urinary excretion of uric acid and decreasing serum urate levels. Effective uricosuria reduces the miscible urate pool, retards urate deposition, and promotes resorption of urate deposits. Probenecid inhibits the tubular secretion of penicillin and usually increases penicillin plasma levels by any route the antibiotic is given. A 2-fold to 4-fold elevation has been demonstrated for various penicillins. Probenecid decreases both hepatic and renal excretion of sulfobromophthalein (BSP). The tubular reabsorption of phosphorus is inhibited in hypoparathyroid but not in euparathyroid individuals. Probenecid does not influence plasma concentrations of salicylates, nor the excretion of streptomycin, chloramphenicol, chlortetracycline, oxytetracycline, or neomycin.
Status:
First approved in 1943

Class (Stereo):
CHEMICAL (ABSOLUTE)


Benzhydrocodone is a prodrug of hydrocodone. Benzhydrocodone is formed by covalently bonding hydrocodone to benzoic acid. Benzhydrocodone itself is not pharmacologically active, but must be metabolized to hydrocodone by enzymes in the intestinal tract to optimally deliver its pharmacologic effects. Hydrocodone is a full agonist of the opioid receptors with a higher affinity for the mu-opioid receptor. Upon binding, hydrocodone produces an analgesic effect with no ceiling. APADAZ a combination of benzhydrocodone and acetaminophen is FDA approved and indicated for the short-term (no more than 14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. APADAZ, even when taken as recommended, can result in addiction, abuse, and misuse, which can lead to overdose and death.

Showing 681 - 690 of 824 results