{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for riboflavin root_notes_note in Note (approximate match)
Status:
US Previously Marketed
Source:
PHOSPHOCOL P32 by CURIUM
(1974)
Source URL:
First approved in 1957
Source:
PHOSPHOTOPE by BRACCO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
P-32 is a radioactive isotope of phosphorus with a half-life of 14.29 days. Radioactive decay of P-32 produces beta-particles (electrons) which are able to penetrate tissue at a range of 3-8 mm. Phosphate ion P-32 has many applications in medicine and biology. P32 sodium phosphate was approved by the FDA for the treatment of polycythemia vera, chronic myelocytic leukemia, and chronic lymphocytic leukemia. P32-phosphate may also be used in the palliative treatment of selected patients with multiple areas of skeletal metastases. As metabolic uptake of phosphorus is selectively increased in malignant tissues, P-32 was also used for cancer diagnostics.
Status:
US Previously Marketed
Source:
OLEANDOMYCIN 200MG OLEANDOMYCIN PHOSPHATE by ROERIG
(1961)
Source URL:
First approved in 1956
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Oleandomycin is a macrolide antibiotic, which was first described under the designation P.A.105 by Sobin, English, and Celmer (1954-5). Later it appeared on the market under three names and in two forms: as pure oleandomycin ("matromycin," Pfizer; "romicil," Hoffmann-La Roche) and as a mixture with twice its weight of tetracycline ("sigmamycin," Pfizer). Oleandomycin can be employed to inhibit the activities of bacteria responsible for causing infections in the upper respiratory tract much like Erythromycin can. Both can affect staphylococcus and enterococcus genera. Oleoandomycin is reported to inhibit most gram-positive bacteria, but has only a slight inhibiting effect on gram-negative bacteria, rickettsiae, and larger viruses. The spectrum of activity on micro-organisms is therefore wider than that of penicillin and streptomycin, but narrower than that of chloramphenicol and the tetracyclines. Oleandomycin is approved as a veterinary antibiotic in some countries. It has been approved as a swine and poultry antibiotic in the United States. However, it is currently only approved in the United States for production uses. Oleandomycin is a bacteriostatic agent. Like erythromycin, oleandomycin binds to the 50s subunit of bacterial ribosomes, inhibiting the completion of proteins vital to survival and replication. It interferes with translational activity but also with 50s subunit formation. However, unlike erythromycin and its effective synthetic derivatives, it lacks a 12-hydroxyl group and a 3-methoxy group. This change in structure may adversely affect its interactions with 50S structures and explain why it is a less powerful antibiotic.
Status:
First approved in 1951
Class (Stereo):
CHEMICAL (ACHIRAL)
Dimoxyline is the synthetic analogue of papaverine, Acute toxicity studies show it to be less toxic than papaverine. No analgesic action and no tolerance development in experimental animals by repeated administration. But Dimoxyline does not appear to be as potent as papaverine in comparable dosage. Dimoxyline is indicated for the treatment of patients with angina pectoris. Also, significant amount of benefit was claimed in patients with acute or chronic phlebitis, arterial thrombosis or embolism, Raynaud’s phenomena and early thromboangiitis obliterans or arteriosclerosis obliterans. Detected adverse events are: nausea or abdominal cramps.
Status:
First approved in 1949
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Adenosine monophosphate (AMP) is a nucleotide, consisting of a phosphate group, the sugar ribose, and the nucleobase adenine. AMP is an activator of several enzymes in the tissues. In the glycolytic pathway, the enzyme phosphofructokinase is inhibited by ATP but the inhibition is reversed by AMP, the deciding factor for the reaction being the ratio between ATP and AMP. In medicine, AMP is used mainly as an alternative to adenosine for treatment of ischemia and as a tool compound to measure hyperresponsiveness of airways.
Status:
US Previously Marketed
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Pentaquine is an 8-aminoquinoline that was used in the 1950s to treat malaria and trypanosomiasis. Pentaquine showed no significant sporontocidal activity against P. gallinaceum in Aedes aegypti. In the experimental animals, the antimalarial effect of pentaquine, its pharmacology and toxicology have been investigated (1, 2). Activity, 80 to 128 times that of quinine and two to eight times that of pamaquin in avian malaria. It has adverse effects very similar to those of primaquine. In mammals it is rapidly absorbed from the gastro-intestinal tract. In acute, and in short term chronic toxicity studies, pentaquine was from one-fourth to one-half as toxic as pamaquin. In the dog, pamaquin in large doses produces severe anorexia, emaciation and ocular paralysis due to central impairment of the sympathetic innervation of the eye. In high dosages pamaquin produces leukopenia, neutropenia, anemia, methemoglobinemia, emaciation, depression, and liver damage in the monkey, effects which are not produced with pentaquine in this species.
Status:
US Previously Marketed
Source:
VASOCON-A by NOVARTIS
(1990)
Source URL:
First approved in 1948
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Antazoline is an antagonist of histamine H1 receptors. It selectively bind to but does not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Antazoline in combination with naphazoline (VASOCON-A®) is indicated to relieve the symptoms of allergic conjunctivitis.
Status:
Possibly Marketed Outside US
Source:
21 CFR 358B
(2018)
Source URL:
First approved in 2018
Source:
21 CFR 358B
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Glucose-6-phosphate belongs to the class of organic compounds known as monosaccharide phosphates. It lies at the start of two major metabolic pathways: glycolysis and the pentose phosphate pathway. It is a glucose-6-phosphatase substrate. Hexokinase is inhibited by its product, glucose 6-phosphate. The non-enzymatic glycation of myosin by glucose 6-phosphate is probably the primary cause for the observed loss of the ATPase activity of myosin.
Status:
Possibly Marketed Outside US
First approved in 2018
Source:
ARONAMIN GOLD by OASIS TRADING
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Riboflavin butyrate (a vitamin B2 derivative used widely in Japan) is often an ingredient of multivitamin complexes, used for relief of following symptoms: stomatitis, glossitis, perleche, cheilitis, rough skin, acne, dermatitis, eczema, rash, sores. It is a supply of Vitamins B2 and B6 in the following situations: physical fatigue, pregnancy/lactation, decline of physical strength during or after illness.
Status:
Possibly Marketed Outside US
Source:
21 CFR 347
(2014)
Source URL:
First approved in 2014
Source:
21 CFR 347
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
Possibly Marketed Outside US
First approved in 2011
Source:
EnBrace HR by Jaymac Pharma
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Cocarboxylase is the coenzyme form of Vitamin B1 present in many animal tissues. Thiamine pyrophosphate (cocarboxylase) is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. Pancreatic cells obtain thiamin from their surroundings and enzymatically convert it into thiamin pyrophosphate (TPP) in the cytoplasm; TPP is then taken up by mitochondria via a specific carrier the mitochondrial TPP transporter (MTPPT; product of the SLC25A19 gene).