{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for nonoxynol root_codes_CAS in CAS (approximate match)
Status:
US Approved Rx
(2001)
Source:
NDA021319
(2001)
Source URL:
First approved in 2001
Source:
NDA021319
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dutasteride is a synthetic 4-azasteroid compound that is a selective inhibitor of both the type 1 and type 2 isoforms of steroid 5 alpha-reductase (5AR), intracellular enzymes that convert testosterone to 5 alpha-dihydrotestosterone (DHT). Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Dutasteride inhibits the conversion of testosterone to 5 alpha-dihydrotestosterone (DHT), which is the androgen primarily responsible for the initial development and subsequent enlargement of the prostate gland. Testosterone is converted to DHT by the enzyme 5 alpha-reductase, which exists as 2 isoforms, type 1 and type 2. Dutasteride is a competitive and specific inhibitor of both type 1 and type 2 5 alpha-reductase isoenzymes, with which it forms a stable enzyme complex. Dissociation from this complex has been evaluated under in vitro and in vivo conditions and is extremely slow. Used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate gland to improve symptoms, and reduce the risk of acute urinary retention and the need for surgery. Marketed under the brand name Avodart.
Status:
US Approved Rx
(2018)
Source:
ANDA210279
(2018)
Source URL:
First approved in 2001
Source:
NDA021278
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Dexmethylphenidate is the dextrorotary form of methylphenidate. Dexmethylphenidate is marketed under the trade name Focalin. Focalin (dexmethylphenidate hydrochloride) is the d-threo-enantiomer of racemic
methylphenidate hydrochloride, which is a 50/50 mixture of the d-threo and l-threoenantiomers. Focalin is a central nervous system (CNS) stimulant, available in three tablet strengths. Each tablet contains dexmethylphenidate hydrochloride 2.5, 5, or 10 mg for oral administration. Dexmethylphenidate is used as a treatment for ADHD, ideally in conjunction with psychological, educational, behavioral or other forms of treatment. Methylphenidate blocks dopamine uptake in central adrenergic neurons by blocking dopamine transport or carrier proteins. Methylphenidate acts at the brain stem arousal system and the cerebral cortex and causes increased sympathomimetic activity in the central nervous system. Methylphenidate is a catecholamine reuptake inhibitor that indirectly increases catecholaminergic neurotransmission by inhibiting the dopamine transporter (DAT) and norepinephrine transporter (NET), which are responsible for clearing catecholamines from the synapse, particularly in the striatum and meso-limbic system.
Status:
US Approved Rx
(2000)
Source:
NDA020989
(2000)
Source URL:
First approved in 2000
Source:
NDA020989
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Cevimeline is a cholinergic agonist, which binds to muscarinic receptors. Muscarinic agonists in sufficient dosage can increase secretion of exocrine glands, such as salivary and sweat glands and increase tone of the smooth muscle in the gastrointestinal and urinary tracts. Cevimeline is indicated for the treatment of symptoms of dry mouth in patients with Sjögren’s Syndrome. Known side effects include nausea, vomiting, diarrhea, excessive sweating, rash, headache, runny nose, cough, drowsiness, hot flashes, blurred vision, and difficulty sleeping. Cevimeline should be administered with caution to patients taking beta adrenergic antagonists, because of the possibility of conduction disturbances. Drugs with para-sympathomimetic effects administered concurrently with cevimeline can be expected to have additive effects. Cevimeline might interfere with desirable antimuscarinic effects of drugs used concomitantly.
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2019)
Source:
ANDA211040
(2019)
Source URL:
First approved in 1999
Source:
NDA021083
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. It is used in medicine to prevent organ transplant rejection and to treat lymphangioleiomyomatosis. Sirolimus inhibits T-lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (Interleukin [IL]-2, IL-4, and IL-15) stimulation by a mechanism that is distinct from that of other immunosuppressants. Sirolimus also inhibits antibody production. In cells, sirolimus binds to the immunophilin, FK Binding Protein-12 (FKBP-12), to generate an immunosuppressive complex. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Studies in experimental models show that sirolimus prolongs allograft (kidney, heart, skin, islet, small bowel, pancreatico-duodenal, and bone marrow) survival in mice, rats, pigs, and/or primates. Sirolimus reverses acute rejection of heart and kidney allografts in rats and prolongs the graft survival in presensitized rats. In some studies, the immunosuppressive effect of sirolimus lasts up to 6 months after discontinuation of therapy. This tolerization effect is alloantigen-specific. In rodent models of autoimmune disease, sirolimus suppresses immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis. Lymphangioleiomyomatosis involves lung tissue infiltration with smooth muscle-like cells that harbor inactivating mutations of the tuberous sclerosis complex (TSC) gene (LAM cells). Loss of TSC gene function activates the mTOR signaling pathway, resulting in cellular proliferation and release of lymphangiogenic growth factors. Sirolimus inhibits the activated mTOR pathway and thus the proliferation of LAM cells.
Status:
US Approved Rx
(2015)
Source:
ANDA090854
(2015)
Source URL:
First approved in 1998
Source:
INTEGRILIN by MSD SUB MERCK
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Eptifibatide is a platelet aggregation inhibitor - an anti-coagulant that selectively blocks the platelet glycoprotein IIb/IIIa receptor. It is a cyclic heptapeptide derived from a protein found in the venom of the southeastern pygmy rattlesnake. It belongs to the class of the so called arginin-glycin-aspartat-mimetics and reversibly binds to platelets. Eptifibatide inhibits platelet aggregation by reversibly binding to the platelet receptor glycoprotein (GP) IIb/IIIa of human platelets, thus preventing the binding of fibrinogen, von Willebrand factor, and other adhesive ligands. Inhibition of platelet aggregation occurs in a dose- and concentration-dependent manner. It is used for treatment of myocardial infarction and acute coronary syndrome.
Status:
US Approved Rx
(2009)
Source:
ANDA090411
(2009)
Source URL:
First approved in 1997
Source:
REQUIP by GLAXOSMITHKLINE LLC
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Ropinirole (INN; trade names Requip, Repreve, Ronirol, Adartrel) is a dopamine agonist of the non-ergoline class of medications, used in the treatment of Parkinson's disease and restless legs syndrome. Although the precise mechanism of action of ropinirole as a treatment for Parkinson's disease is unknown, it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that ropinirole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. Ropinirole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The mechanism of ropinirole-induced postural hypotension is presumed to be due to a D2 -mediated blunting of the noradrenergic response to standing and subsequent decrease in peripheral vascular resistance. Ropinirole can cause nausea, dizziness, hallucinations, orthostatic hypotension, and sudden sleep attacks during the daytime. Unusual side effects specific to D3 agonists such as ropinirole and pramipexole can include hypersexuality, punding, and compulsive gambling, even in patients without a history of these behaviors.
Status:
US Approved Rx
(2002)
Source:
ANDA076347
(2002)
Source URL:
First approved in 1996
Source:
NDA020397
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Side effects include dizziness, drowsiness, weakness, nervousness, hallucinations, depression, vomiting, dry mouth, constipation, diarrhea, stomach pain, heartburn, increased muscle spasms, back pain, rash, sweating, and a tingling sensation in the arms, legs, hands, and feet.
Status:
US Approved Rx
(2016)
Source:
ANDA208322
(2016)
Source URL:
First approved in 1996
Source:
DIFFERIN by GALDERMA LABS LP
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Adapalene is a topical retinoid primarily used in the treatment of acne and is used (off-label) to treat keratosis pilaris as well as other skin conditions. Galderma currently markets it under the trade names Differin in some countries, and Adaferin in India. Adapalene acts on retinoid receptors. Biochemical and pharmacological profile studies have demonstrated that adapalene is a modulator of cellular differentiation, keratinization, and inflammatory processes all of which represent important features in the pathology of acne vulgaris. Mechanistically, adapalene binds to specific retinoic acid nuclear receptors but does not bind to the cytosolic receptor protein. Although the exact mode of action of adapalene is unknown, it is suggested that topical adapalene normalizes the differentiation of follicular epithelial cells resulting in decreased microcomedone formation.
Status:
US Approved Rx
(2011)
Source:
ANDA091365
(2011)
Source URL:
First approved in 1996
Source:
GEMZAR by LILLY
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar® by Eli Lilly and Company. Gemcitabine inhibits thymidylate synthetase, leading to inhibition of DNA synthesis and cell death. Gemcitabine is a prodrug so activity occurs as a result of intracellular conversion to two active metabolites, gemcitabine diphosphate and gemcitabine triphosphate by deoxycitidine kinase. Gemcitabine diphosphate also inhibits ribonucleotide reductase, the enzyme responsible for catalyzing synthesis of deoxynucleoside triphosphates required for DNA synthesis. Finally, Gemcitabine triphosphate (diflurorodeoxycytidine triphosphate) competes with endogenous deoxynucleoside triphosphates for incorporation into DNA. Gemcitabine is indicated for the treatment of advanced ovarian cancer that has relapsed at least 6 months after completion of platinum-based therapy; metastatic ovarian cancer; inoperable, locally advanced (Stage IIIA or IIIB), or metastatic (Stage IV) non-small cell lung cancer; and locally advanced (nonresectable Stage II or Stage III) or metastatic (Stage IV) adenocarcinoma of the pancreas.