U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 571 - 580 of 12523 results

Status:
Investigational
Source:
NCT00385177: Phase 1 Interventional Completed Breast Neoplasms
(2006)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

SN38 (7-ethyl-10-hydroxy camptothecin) is a prominent and efficacious anticancer agent. It is poorly soluble in both water and pharmaceutically approved solvents; therefore, the direct formulation of SN38 in solution form is limited. SN38 is formed via hydrolysis of irinotecan by carboxylesterases and metabolized via glucuronidation by UGT1A1. Currently, the water soluble prodrug of SN38, irinotecan (CPT-11), is formulated as a low pH solution and is approved for chemotherapy. SN38 causes the strongest inhibition of DNA topoisomerase I, followed by CPT and then CPT-11. CPT-11 dose dependently shifts the position of relaxed DNA in the direction of nicked DNA, but SN38 and CPT shows no effect on the position of relaxed DNA. SN38 dose-dependently and time-dependently inhibit DNA synthesis. Respective IC50 values of SN38, in DNA synthesis is 0.077 uM.
Status:
Investigational
Source:
INN:elacridar [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Elacridar is an oral bioenhancer that targets multiple drug resistance in tumors. Elacridar is a strong and relatively specific inhibitor of P-gp and BCRP, two main efflux transporters. Development of elacridar is assumed to have been discontinued.
Status:
Investigational
Source:
NCT02518113: Phase 1/Phase 2 Interventional Completed T-cell Acute Lymphoblastic Leukemia
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



LY-3039478 is an orally bioavailable, novel small molecule inhibitor of Notch signaling pathway, developed Eli Lilly and Company for cancer treatment. The Notch receptor, on the surfaces of progenitor cells and cancer cells, binds neighboring cell-surface ligands DLL or JAGGED. On ligand binding, the intramembrane protease γ-secretase cleaves the Notch intracellular domain (NICD). LY-3039478 is an exquisitely potent inhibitor of Notch-1 intracellular domain (N1ICD) cleavage with an IC50 of ∼1nM in most of the tumor cell lines tested. LY3039478 also potently inhibits mutant Notch receptor activity. Treatment with a gamma-secretase inhibitor, LY3039478, significantly inhibited the growth of 2 CCRCC(Clear cell renal cell carcinoma) cell lines in a concentration-dependent manner. LY3039478 treatment also led to decreased expression of Myc and Cyclin A1, two genes that were part of the NOTCH driven proliferative signature in murine and human model systems. LY3039478 treatment also led to G0/G1 cell cycle arrest in CCRCC cells. In a xenograft tumor model, LY3039478 inhibited N1ICD cleavage and expression of Notch-regulated genes in the tumor microenvironment. The inhibition of Notch cleavage also resulted in the induction of apoptosis in a Notch-dependent xenograft model. In immunodeficient NSG mice xenografted with 769-P CCRCC cells, LY3039478 treatment resulted in significantly increased survival and delayed tumor growth in independent cohorts of mice demonstrating in vivo efficacy in CCRCC. LY3039478 is being investigated in a clinical trial in patients with T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma in combination with Dexamethasone.
Status:
Investigational
Source:
INN:aramisulpride [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT02607280: Phase 3 Interventional Completed Diabetic Peripheral Neuropathic Pain
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Mirogabalin, a selective alpha 2 delta ligand binds to the α2δ subunits of voltage-dependent calcium channels and thus blocks the channel. This drug was developed by Daiichi Sankyo and in January 2019 was approved in Japan for the treatment of neuropathic pain and for the postherpetic neuralgia.
Status:
Investigational
Source:
NCT03301454: Phase 2 Interventional Unknown status Esophageal Cancer, Squamous Cell
(2018)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Imazethapyr is an imidazole compound used as a selective herbicide. It is applied preplant incorporated, preemergence, at cracking, and postemergence. The compound controls weeds by reducing the levels of three branched-chain aliphatic amino acids, isoleucine, leucine and valine, through the inhibition of aceto-hydroxyacid synthase, an enzyme common to the biosynthetic pathway for these amino acids. This inhibition causes a disruption in protein synthesis which, in turn, leads to an interference in DNA synthesis and cell growth. The compound is used to control grasses and broadleaved weeds including barnyardgrass, crabgrass, cocklebur, panicums, pigweeds, nightshade, mustard, smartweed, velvetleaf, jimsonweed, foxtails, seedling johnsongrass, lambsquarters, morningglory and others. Tolerant crops include soybeans, peanuts, dry and edible beans, peas, alfalfa and imidazolinone resistant/tolerant corn. Additional research is being conducted on other leguminous crops. Acetolactate synthase inhibition is the primary mechanism of action of imazethapyr (IM).
Status:
Investigational
Source:
NCT04183907: Not Applicable Interventional Completed PreDiabetes
(2021)
Source URL:

Class (Stereo):
CHEMICAL (MIXED)

Status:
Investigational
Source:
NCT02903836: Phase 2 Interventional Completed Community-Acquired Bacterial Pneumonia (CABP)
(2016)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
NCT03091192: Phase 3 Interventional Active, not recruiting Carcinoma
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Savolitinib (AZD6094, HMPL-504) has been demonstrated to inhibit the growth of tumors in a series of preclinical disease models, selectively for those tumors with aberrant c-Met signaling. Phase I dose escalation studies were initiated in Australia and China in 2012 and 2013 respectively. Savolitinib has demonstrated good safety and tolerability and favorable pharmacokinetic properties in late stage cancer patients, and has shown encouraging anti-tumor activity in several tumor-types, in particular for metastatic Papillary Renal Cell Cancer (PRCC). Phase II, study designed to evaluate the efficacy and safety of savolitinib in patients with locally advanced or metastatic PRCC. Approximately 20 centers in the United States, Canada, and Europe will participate in the study. The primary objective of this study is to assess the anti-tumor activity in patients with PRCC as measured by overall response rate according to Response Evaluation Criteria in Solid Tumours (“RECIST”). The secondary objectives for this study are to: assess the progression free survival and duration of response in patients with PRCC according to RECIST; assess the safety and tolerability in the treatment of patients with PRCC; characterize the pharmacokinetics and pharmacodynamics of savolitinib and metabolites following administration to steady state after multiple dosing when given orally.