U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 551 - 560 of 4227 results

Status:
Investigational
Source:
NCT00930059: Phase 2 Interventional Completed Alzheimer's Disease
(2009)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



PF-04447943 is a potent, selective brain penetrant PDE9 inhibitor (Ki of 2.8, 4.5 and 18 nM) for human, rhesus and rat recombinant PDE9 respectively and high selectivity for PDE9 versus PDEs1-8 and 10-11. PF-04447943 was being developed by Pfizer for the treatment of cognitive disorders. PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. PF-04447943 enhances synaptic plasticity and cognitive function in rodents. PF-04447943 has completed Phase II clinical trials in subjects with mild to moderate AD in 2013 but this research was discontinued. Pfizer completes a phase I trial in Sickle cell anaemia.
Buparlisib (NVP-BKM12), a dimorpholino pyrimidine derivative, is a selective pan class I phosphatidylinositol-3 kinase (PI3K) inhibitor for treating cancer. It penetrates the blood-brain barrier and has a potential as a glioma treatment. NVP-BKM120 inhibits PI3K activity by binding to the ATP binding cleft of this enzymes and was tested against class I PI3K and other kinases using an ATP depletion (Kinase-Glo) assay. The compound was shown to be active against P110 α, β, γ and δ. The inhibition of the PI3K signaling pathways leads to different forms of cell death on the basis of p53 statuses. Buparlisib demonstrated its activity in human glioblastoma (GBM) cells in vitro and in vivo and is in clinical trials for solid tumors including GBM.
Status:
Investigational
Source:
NCT03679598: Phase 2 Interventional Completed Alpha-1 Antitrypsin Deficiency (AATD)
(2019)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Avelestat, also known as AZD9668, is a novel, oral inhibitor of neutrophil elastase (NE), an enzyme implicated in the signs, symptoms, and disease progression in NE-driven respiratory diseases such as bronchiectasis, Cystic Fibrosis and chronic obstructive pulmonary disease via its role in the inflammatory process, mucus overproduction, and lung tissue damage. Its development was discontinued due to unknown reasons. Nevertheless, this drug in the phase II of clinical trial as adjunctive therapy in improving insulin sensitivity of insulin-resistant type 2 diabetic subjects. The drug's clinical profile suggests that it will be well tolerated with few, if any, side effects, and the existence of simple methods that can indirectly measure its activity in vivo.
Status:
Investigational
Source:
Invest New Drugs. Dec 2005;23(6):577-81.: Phase 2 Human clinical trial Completed Lung Neoplasms/metabolism/secondary
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Swainsonine is an indolizidine alkaloid found in Australian Swainsona canescens, North American plants of the genera Astragalus and Oxytropis and also in the fungus Rhizoctonia leguminocola. It is competitive inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidases. This compound has been reported to be a potent antiproliferative and immunomodulatory agent. However, no evidence of anti-tumor activity of swainsonine was seen in phase II clinical trial, in patients with locally advanced or metastatic renal cell carcinoma. Adverse events such as fatigue, nausea and diarrhea were common but generally mild. Swainsonine is locoweed toxin. Locoweed poisoning is seen throughout the world and annually costs the livestock industry millions of dollars. Swainsonine inhibits lysosomal alpha-mannosidase and Golgi mannosidase II. Poisoned animals are lethargic, anorexic, emaciated, and have neurologic signs that range from subtle apprehension to seizures.
Status:
Investigational
Source:
INN:naxagolide
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Naxagolide (MK-458; L 647,339; (+)-PHNO) is a dopamine D2/D3-receptor agonist, which was studied for the treatment of patients with Parkinson's disease, but further study was discontinued. In addition, was discovered, that Naxagolide C-11 ([(11)C]-(+)-PHNO) was a potential radiotracer for imaging the high-affinity state of dopamine D2 receptors with positron emission tomography (PET) in human subjects. This radiotracer is a suitable for imaging the agonist binding sites (denoted D(2HIGH) and D(3)) of these receptors. PET studies in nonhuman primates documented that, in vivo, [(11)C]-(+)-PHNO displays a relative selectivity for D(3) compared with D(2HIGH) receptor sites and that the [(11)C]-(+)-PHNO signal is enriched in D(3) contribution compared with conventional ligands such as [(11)C] raclopride. Recently was published article reflects the relationship between social attachment and dopamine D2/3 receptor availability in the brains of healthy humans using [11C]-(+)-PHNO.
Status:
Investigational
Source:
NCT00696332: Phase 2 Interventional Completed ALS
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Talampanel (TLP) was developed as a noncompetitive (allosteric) antagonist of the AMPA receptor. Talampanel does not act directly on the AMPA receptor, but at an allosteric site referred to as the GYKI receptor. Talampanel is being studied in the treatment of brain tumors and other brain disorders, such as epilepsy, Parkinson disease, amyotrophic lateral sclerosis, dyskinesias, glioblastoma, multiple sclerosis. It is a type of AMPA receptor antagonist. Dizziness has been the most commonly reported adverse event, with some sedation and ataxia, drowsiness and headaches reported at higher doses.
Status:
Investigational
Source:
INN:saprisartan
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Saprisartan (formerly known as GR 138950) was developed as a potent long-lasting angiotensin II (AT1) receptor antagonist with high oral bioavailability. The drug was used for the treatment of hypertension and heart failure. However, these studies were discontinued.
Status:
Investigational
Source:
NCT04468984: Phase 3 Interventional Active, not recruiting Myelofibrosis (MF)
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Navitoclax (ABT-263) is an oral selective inhibitor of B-cell leukemia 2 (Bcl-2) family of proteins with potential antineoplastic activity. Navitoclax is a small molecular with the formula of C47H55ClF3N5O6S3 and Molecular Weight of 974. As a Bad-like Bh3 minetic, ABT-263 binds to Bcl-2 family proteins Bcl-2, Bcl-xl and Bcl-w, disrupts the interaction between Bcl-2/Bcl-xl /Bcl-w and pro-apoptotic proteins such as Bim, Bad and Bak, which trigger the caspases-initiated cell death pathway to induce apoptosis. Navitoclax has been in phase II clinical trials by Abbvie for the treatment of prostate cancer, chronic lymphocytic leukaemia and lymphoma. However, this research has been discontinued.
Status:
Investigational
Source:
NCT01929044: Phase 3 Interventional Completed Intestinal Diseases
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Anisodamine is a naturally occurring atropine derivative that has been isolated, synthesized and characterized by scientists in the People's Republic of China. Anisodamine is a non-specific cholinergic antagonist. Anisodamine has been shown to interact with and disrupt liposome structure which may reflect its effects on cellular membranes. Experimental evidence implicates anisodamine as an anti-oxidant that may protect against free radical-induced cellular damage. Its cardiovascular properties include depression of cardiac conduction and the ability to protect against arrhythmia induced by various agents. Anisodamine is a relatively weak alpha(1) adrenergic antagonist which may explain its vasodilating activity. Its anti-thrombotic activity may be a result of inhibition of thromboxane synthesis. Numerous therapeutic uses of anisodamine have been proposed including treatment of septic shock, various circulatory disorders, organophosphorus (OP) poisoning, migraine, gastric ulcers, gastrointestinal colic, acute glomerular nephritis, eclampsia, respiratory diseases, rheumatoid arthritis, obstructive jaundice, opiate addiction, snake bite and radiation damage protection. The primary therapeutic use of anisodamine has been for the treatment of septic shock. Several mechanisms have been proposed to explain its beneficial effect though most mechanisms are based upon the assumption that anisodamine ultimately acts by an improvement of blood flow in the microcirculation. Preliminary studies suggest another important therapeutic use of anisodamine is for the treatment of OP poisoning. Anisodamine has been employed therapeutically since 1965 in the People’s Republic of China primarily to improve blood flow in circulatory disorders such as septic shock, disseminated intravascular coagulation (DIC) and as an antidote to organophosphate poisoning.
Status:
Investigational
Source:
NCT00262990: Phase 3 Interventional Completed Ovarian Cancer
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Patupilone is a compound isolated from the myxobacterium Sorangium cellulosum. Similar to paclitaxel, Patupilone induces microtubule polymerization and stabilizes microtubules against depolymerization conditions. In addition to promoting tubulin polymerization and stabilization of microtubules, this agent is cytotoxic for cells overexpressing P-glycoprotein, a characteristic that distinguishes it from the taxanes. Epothilone B may cause complete cell-cycle arrest. Patupilone failed a phase III trial for ovarian cancer in 2010.