U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 511 - 520 of 39585 results

Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Acetylcysteine (also known as N-acetylcysteine or N-acetyl-L-cysteine or NAC) is primarily used as a mucolytic agent and in the management of acetaminophen poisoning. Acetylcysteine likely protects the liver by maintaining or restoring the glutathione levels, or by acting as an alternate substrate for conjugation with, and thus detoxification of, the reactive metabolite. Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC) is known to have excellent mucolytic capabilities and is used to treat cystic fibrosis (CF) lung disease. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. The potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. Acetylcysteine serves as a prodrug to L-cysteine, which is a precursor to the biologic antioxidant, glutathione, and hence administration of acetylcysteine replenishes glutathione stores. L-cysteine also serves as a precursor to cystine, which in turn serves as a substrate for the cystine-glutamate antiporter on astrocytes hence increasing glutamate release into the extracellular space. Acetylcysteine also possesses some anti-inflammatory effects possibly via inhibiting NF-κB through redox activation of the nuclear factor kappa kinases thereby modulating cytokine synthesis. NAC is associated with reduced levels of inflammatory cytokines and acts as a substrate for glutathione synthesis. These actions are believed to converge upon mechanisms promoting cell survival and growth factor synthesis, leading to increased neurite sprouting.
Ampicillin is a penicillin beta-lactam antibiotic. The following gram-negative and gram-positive bacteria have been shown in in vitro studies to be susceptible to ampicillin: Hemolytic and nonhemolytic streptococci, Streptococcus pneumoniae, Nonpenicillinase-producing staphylococci, Clostridium spp., B. anthracis, Listeria monocytogenes, most strains of enterococci, H. influenzae, N. gonorrhoeae, N. meningitidis, Proteus mirabilis, many strains of Salmonella, Shigella, and E. coli. Ampicillin is indicated in the treatment of bacterial meningitis, septicemia, endocarditis, urinary tract, gastrointestinal, respiratory tract infections caused by susceptible strains of the designated organisms.
Oxacillin is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Oxacillin has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Oxacillin results from the inhibition of cell wall synthesis and is mediated through Oxacillin binding to penicillin binding proteins (PBPs). Oxacillin is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Oxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Oxacillin interferes with an autolysin inhibitor. Oxacillin is used in the treatment of resistant staphylococci infections. Oxacillin sodium was marketed under the trade name Bactocill.
Status:
First approved in 1962

Class (Stereo):
CHEMICAL (RACEMIC)



Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. The mechanism of action of metaxalone in humans has not been established, but may be due to general central nervous system depression. Metaxalone has no direct action on the contractile mechanism of striated muscle, the motor end plate, or the nerve fiber. Skelaxin is available in an 800 mg scored tablet. Metaxalone relatively low incidence of side effects. The most common adverse reactions to Metaxalone tablets include drowsiness, dizziness, headache, and nervousness or “irritability”, nausea, vomiting, gastrointestinal upset.
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Iothalamic Acid is an iodine-containing organic anion used as a radiocontrast agent. It is available as sodium iothalamate (Iothalamate sodium) and meglumine iothalamate (Iothalmate meglumine). It can be administered intravenously or intravesically (into the urinary bladder). Iothalamate is indicated to visualize specific regions of the vascular system and blood flow in these areas to help in the diagnosis and evaluation of neoplasms (known or suspected) or vascular diseases (congenital or acquired) that may cause changes in normal vascular anatomy or physiology. Iothalamate meglumine injection is indicated for use in cerebral angiography, peripheral arteriography or venography, arterial digital subtraction angiography1 , and intravenous digital subtraction angiography. Iothalamate meglumine and iothalamate sodium injection is indicated for use in selective coronary arteriography, selective renal arteriography, and in intravenous digital subtraction angiography. othalamate meglumine and iothalamate sodium injection and iothalamate sodium injection are indicated to visualize the aorta and its major branches. However, the injection of iothalamate meglumine and iothalamate sodium is preferred because it generally causes less severe hemodynamic, neurotoxic, and cardiotoxic effects than the individual injection of iothalamate sodium. Radioactive formulation is also available as sodium iothalamate I-125 Injection (GLOFIL-125). It is indicated for evaluation of glomerular filtration in the diagnosis or monitoring of patients with renal disease.
Amitriptyline is a derivative of dibenzocycloheptadiene and a tricyclic antidepressant (TCA) and is mainly used to treat symptoms of depression. It works on the central nervous system (CNS) by inhibiting the membrane pump mechanism responsible for uptake of norepinephrine and serotonin in adrenergic and serotonergic neurons. Amitriptyline has been frequently used as an active comparator in clinical trials on newer antidepressants. It is rarely used as a first-line antidepressant nowadays due to its high degree of toxicity in overdose and generally poorer tolerability than the newer antidepressants.