U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 511 - 520 of 39591 results


Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

6-Aminocaproic acid (epsilon-aminocaproic acid, marketed as Amicar) is an ant fibrinolytic agent that acts by inhibiting plasminogen activators, which have fibrinolytic properties. It is useful in enhancing hemostasis when fibrinolysis contributes to bleeding. In life threatening situations, transfusion of appropriate blood products and other emergency measures may be required. Fibrinolytic bleeding may frequently be associated with surgical complications following heart surgery (with or without cardiac bypass procedures) and portacaval shunt; hematological disorders such as a megakaryocytic thrombocytopenia (accompanying aplastic anemia); hepatic cirrhosis; and neoplastic disease such as carcinoma of the prostate, lung, stomach, and cervix. Aminocaproic acid binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. With NO activation of plasmin, there is a reduction in fibrinolysis. The drug should NOT be administered without a definite diagnosis and/or laboratory finding indicative of hyperfibrinolysis (hyperplasminemia). Inhibition of fibrinolysis by aminocaproic acid may theoretically result in clotting or thrombosis. However, there is no definite evidence that administration of aminocaproic acid has been responsible for the few reported cases of intravascular clotting which followed this treatment. Rather, it appears that such intravascular clotting was most likely due to the patient's preexisting clinical condition, e.g., the presence of DIC. It has been postulated that extravascular clots formed in vivo may not undergo spontaneous lysis as do normal clots. Reports have appeared in the literature of an increased incidence of certain neurological deficits such as hydrocephalus, cerebral ischemia, or cerebral vasospasm associated with the use of ant fibrinolytic agents in the treatment of subarachnoid hemorrhage (SAH). All of these events have also been described as part of the natural course of SAH, or as a consequence of diagnostic procedures such as angiography. Drug relatedness remains unclear. Aminocaproic acid may change the conformation of apoliprotein, changing its binding properties and potentially preventing the formation of lipoprotein.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)

The selenite anion is a selenium oxoanion with the chemical formula SeO2−3. A selenite (Se) is a compound that contains this ion. Sodium selenite is an inorganic form of the trace element selenium with potential antineoplastic activity. It was documented that Se deficiency observed in some countries and/or geographic regions (e.g. Keshan region in China), is associated with an increased morbidity and mortality of neoplastic diseases. To correct this problem a number of organic and inorganic selenium compounds were developed and tested. However, it is now firmly established that only an inorganic sodium selenite with four-valent Se, and not that with six-valent (selenate) cation shows anticancer activity. Selenite can undergo redox reaction, for example with protein's sulfhydryl groups expressed on the surface of tumor cells. In this way selenite prevents non-enzymatic formation of parafibrin that coats tumors cells and hence presents them as 'self' to the innate cellular immune system. Consequently, macrophages of the lymphatic system do not recognize neoplastic cells as 'foreign' bodies and spare them from the immune destruction. Sodium selenite also showed promise as a cost-effective, nontoxic anti-inflammatory agent. Treatment with sodium selenite lowers reactive oxygen species (ROS) production, causes a spontaneous reduction in lymphedema volume, increases the efficacy of physical therapy for lymphedema, and reduces the incidence of erysipelas infections in patients with chronic lymphedema. Limited evidence has been presented though that intakes of selenium greater than the amount needed to allow full expression of selenoproteins may have chemopreventive effects against cancer. Controlled intervention studies are needed to fully evaluate selenium as a cancer chemopreventive agent. The US Food and Drug Administration approved a selenium supplement to animal diets; the most common form is sodium selenite for pet foods.
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Acetylcysteine (also known as N-acetylcysteine or N-acetyl-L-cysteine or NAC) is primarily used as a mucolytic agent and in the management of acetaminophen poisoning. Acetylcysteine likely protects the liver by maintaining or restoring the glutathione levels, or by acting as an alternate substrate for conjugation with, and thus detoxification of, the reactive metabolite. Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC) is known to have excellent mucolytic capabilities and is used to treat cystic fibrosis (CF) lung disease. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. The potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. Acetylcysteine serves as a prodrug to L-cysteine, which is a precursor to the biologic antioxidant, glutathione, and hence administration of acetylcysteine replenishes glutathione stores. L-cysteine also serves as a precursor to cystine, which in turn serves as a substrate for the cystine-glutamate antiporter on astrocytes hence increasing glutamate release into the extracellular space. Acetylcysteine also possesses some anti-inflammatory effects possibly via inhibiting NF-κB through redox activation of the nuclear factor kappa kinases thereby modulating cytokine synthesis. NAC is associated with reduced levels of inflammatory cytokines and acts as a substrate for glutathione synthesis. These actions are believed to converge upon mechanisms promoting cell survival and growth factor synthesis, leading to increased neurite sprouting.
Ampicillin is a penicillin beta-lactam antibiotic. The following gram-negative and gram-positive bacteria have been shown in in vitro studies to be susceptible to ampicillin: Hemolytic and nonhemolytic streptococci, Streptococcus pneumoniae, Nonpenicillinase-producing staphylococci, Clostridium spp., B. anthracis, Listeria monocytogenes, most strains of enterococci, H. influenzae, N. gonorrhoeae, N. meningitidis, Proteus mirabilis, many strains of Salmonella, Shigella, and E. coli. Ampicillin is indicated in the treatment of bacterial meningitis, septicemia, endocarditis, urinary tract, gastrointestinal, respiratory tract infections caused by susceptible strains of the designated organisms.
Oxacillin is a penicillin beta-lactam antibiotic used in the treatment of bacterial infections caused by susceptible, usually gram-positive, organisms. The name "penicillin" can either refer to several variants of penicillin available, or to the group of antibiotics derived from the penicillins. Oxacillin has in vitro activity against gram-positive and gram-negative aerobic and anaerobic bacteria. The bactericidal activity of Oxacillin results from the inhibition of cell wall synthesis and is mediated through Oxacillin binding to penicillin binding proteins (PBPs). Oxacillin is stable against hydrolysis by a variety of beta-lactamases, including penicillinases, and cephalosporinases and extended spectrum beta-lactamases. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, Oxacillin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Oxacillin interferes with an autolysin inhibitor. Oxacillin is used in the treatment of resistant staphylococci infections. Oxacillin sodium was marketed under the trade name Bactocill.
Status:
First approved in 1962

Class (Stereo):
CHEMICAL (RACEMIC)



Metaxalone (marketed by King Pharmaceuticals under the brand name Skelaxin) is a muscle relaxant used to relax muscles and relieve pain caused by strains, sprains, and other musculoskeletal conditions. The mechanism of action of metaxalone in humans has not been established, but may be due to general central nervous system depression. Metaxalone has no direct action on the contractile mechanism of striated muscle, the motor end plate, or the nerve fiber. Skelaxin is available in an 800 mg scored tablet. Metaxalone relatively low incidence of side effects. The most common adverse reactions to Metaxalone tablets include drowsiness, dizziness, headache, and nervousness or “irritability”, nausea, vomiting, gastrointestinal upset.
Tegafur (INN, BAN, USAN) is a chemotherapeutic fluorouracil prodrug used in the treatment of cancers. It is a component of the combination drugs tegafur/uracil and tegafur/gimeracil/oteracil. UFT is an anticancer medication composed of a fixed molar ration (1:4) of tegafur and uracil. This drug is commonly used in the treatment of head and neck cancer, gastric cancer, colorectal cancer, hepatic cancer, gallbladder cancer, bile-duct cancer, pancreatic cancer, lung cancer, breast cancer, bladder cancer, prostatic cancer, or uterine cervical cancer. In the body, tegafur is converted into 5-fluorouracil (5-FU), the active antineoplastic metabolite. The mechanism of cytotoxicity of 5-FU is thought to be derived from the fact that 5-fluoro-deoxyuridine-monophosphate (FdUMP), the active metabolite of 5-FU, competes with deoxyuridine-monophosphate (dUMP), thereby inhibiting thymidylate synthase and subsequently DNA synthesis. Another active metabolite of 5-FU, 5-fluorouridine-triphosphate (FUTP) is integrated into cellular RNA, inhibiting RNA function. Uracil, when combined with tegafur, enhances the antitumor activity of 5-FU due to higher 5-FU concentrations in the tumor tissue versus normal surrounding tissue compared with tegafur alone. Uracil inhibits degradation of the released 5-FU. The combination of these two drugs enhances the antitumor activity of Tegafur.
Methyldopate hydrochloride [levo-3-(3,4-dihydroxyphenyl)-2-methylalanine, ethyl ester hydrochloride] is the ethyl ester of methyldopa, supplied as the hydrochloride salt with a molecular weight of 275.73. Methyldopate hydrochloride is more soluble and stable in solution than methyldopa and is the preferred form for intravenous use. Methyldopate hydrochloride is an alpha adrenergic agonist that has both central and peripheral nervous system effects. Its primary clinical use is as an antihypertensive agent.