{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "VATC|CARDIAC THERAPY" in comments (approximate match)
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Lorcainide is a class Ic antiarrhythmic medication. It was reported to be highly efficient for the treatment of ventricular arrhythmias, ventricular fibrillation, and tachycardia. The drug was used under the name Remivox. The mechanism of lorcainide action involves the blockage of sodium channels. Lorcainide was withdrawn from the market for a commercial reason, but later it was admitted that the use of the drug is associated with high risk of death.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Octopamine is an organic chemical closely related to norepinephrine. In many types of invertebrates it functions as a neurotransmitter. Octopamine is known to exert adrenergic effects in mammals although specific octopamine receptors have been cloned only in invertebrates. It has been shown that octopamine can stimulate alpha(2)-adrenoceptors (ARs) in Chinese hamster ovary cells transfected with human alpha(2)-ARs. Octopamine stimulates lipolysis through beta(3)-rather than beta(1)-or beta(2)-AR activation in white adipocytes from different mammalian species. Octopamine activates only beta(3)-ARs and is devoid of alpha(2)-adrenergic agonism. Thus, octopamine could be considered as an endogenous selective beta(3)-AR agonist. In humans Octopamine is a trace amine found endogenously in the human brain where it interacts with signalling of catecholamines; it is structurally similar to synephrine and tyramine, being a metabolite of the latter (via dopamine β-hydroxylase) and substrate for the synthesis of the former (via phenethanolamine N-methyltransferase[3]) while being perhaps the closest in structure to noradrenaline. Octopamine is found in the bitter orange similar to many biogenic amines related to L-tyrosine that are used as dietary supplements, this includes synephrine and hordenine. p-Octopamine HCl (Norphen) was studied in the late
1960’s and 1970’s as a drug for the treatment of hypotensive
regulatory and circulatory disorders. Octopamine was used as a nootropic. All optical isomers (enantiomers) of octopamine are on the
World Anti-Doping Agency (WADA) 2014 list of substances
prohibited in competition.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Ibopamine is the prodrug of epinine or N-methyl dopamine. Ibopamine stimulates the DA1 and DA2 dopaminergic receptors, the beta 1 and beta 2 adrenoceptors, and the alpha 1 and alpha 2 adrenoceptors. Ibopamine has varying degrees of affinity for these various families, being the highest for the dopamine receptors and the lowest for the alpha adrenergic receptors. Ibopamine reduces systemic vascular resistance, increases cardiac output, and increases renal flow. Ibopamine also modulates the neuroendocrine reflexes in heart failure; plasma renin activity and norepinephrine and aldosterone plasma concentrations are reduced, both immediately and during sustained administration. In patients with heart failure (HF), low doses appear to exert beneficial neurohormonal, hemodynamic, and renal effects, without increased inotropic effects. However, at higher doses (> 200 mg) ibopamine exerts effects that do not appear to be clinically useful in long-term treatment of chronic HF. Several small trials have suggested a benefit of ibopamine on exercise performance in patients with mild to moderate HF. On the basis of these studies, ibopamine is now being used in Europe to treat patients with mild to moderate congestive heart failure (CHF). At doses of 100 or 200 mg/t.i.d., there has been no evidence of significant safety problems. Ibopamine was used in Europe to treat heart failure. In 1995, a study showed that ibopamine increased death rates in patients who had moderate to severe heart failure. In September 1995, doctors and pharmacists in the Netherlands were officially notified that ibopamine should be used only in patients with mild heart failure. Moreover, the official recommendations for when to use ibopamine were changed according to whether patients had mild or severe heart failure. Ibopamine, a sympathomimetic drug, is used in ophthalmology. t has a not-cycloplegic mydriatic activity. Its peak of action is at 45 minutes after instillation in the conjunctival sac. Its action lasts after about 360 minutes. Its D1-dopaminergic stimulation increases the aqueous humor production and it is a provocative test for evaluating the function of aqueous humor outflow structures also in relatives of glaucomatous patients. It is also useful to treat ocular hypotension. Its main use is in every ophthalmological assessment, either diagnostic or preoperative, where the cycloplegia is not adviced. It is useful for the safe mydriasis of patients treated with α-1 adrenergic receptor antagonists.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Trimetazidine is a medicine, which is used for the treatment of angina pectoris. The drug mechanism of action is explained by its ability to selectively inhibit long-chain 3-ketoacyl coenzyme A thiolase, an enzyme responsible for mitochondrial beta-oxidation of long chain fatty acids. Trimetazidine also increases pyruvate dehydrogenase activity, binds to the mitochondrial membrane, directly inhibits cardiac fibrosis and improves mechanical resistance of the sarcolemma.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Imolamine is a coronary vasodilator, which is used in the treatment of angina pectoris and as a local anesthetic. Imolamine has been shown to produce in animals coronary vasodilation, local anaesthesia, analgesia and a papaverine like action in duodenal preparations. Imolamine increased the tone of uterus and ileum and this was accompanied by a reduction in amplitude of contraction. The response of the stomach tissue to imolamine was similar to that of butalamine and aminophylline, i.e. a relaxant action on smooth muscle. Imolamine has a variable action on tone, producing an increase in ileum and uterus and a decrease in stomach. Imolamine is able to cause severe cytolytic hepatitis.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lanatoside C (or isolanid) is a cardiac glycoside, a type of drug that can be used in the treatment of heart disease. Digitalis lanata is a significant medicinal plant as a source of this compound. Lanatoside C is marketed in a number of countries and it’s also available in generic form. It can be transformed into digoxin by deglucolysation.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Beta-methyl digoxin (beta-methyl digoxin; Metildigoxin (INN, or medigoxin BAN, or methyldigoxin) is a methyl derivative (methyl group in position 4 of the digitoxose residue) of digoxin is a cardiac glycoside, a type of drug that can be used in the treatment of congestive heart failure and cardiac arrhythmia (irregular heartbeat). The substance is closely related to digoxin; it differs from the latter only by an O-methyl group on the terminal monosaccharide.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Aprindine is a class Ib antiarrhythmic agent. It is not approved in USA, but is available in European countries, where it is used to treat supraventricular and ventricular arrhythmias. Aprindine acts by blocking sodium voltage channels and disrupting interactions between calmodulin and prosphodiesterase.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Oxyfedrine, an amino ketone derivative and partial agonist at beta receptors, has been shown to have potent antianginal properties and to increase coronary blood flow in normal and ischemic myocardial regions.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Dilazep is a coronary and cerebral vasodilator as an adenosine reuptake inhibitor. Dilazep is an inhibitor of platelet aggregation and of membrane transport of nucleosides. Dilazep is also known to have a vasodilating effect on renal vessels and is often used in patients with ischaemic heart disease, cerebral ischemia or renal dysfunction to improve tissue circulation.