{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m ganciclovir
to a specific field?
Status:
Investigational
Class:
NUCLEIC ACID
Status:
Investigational
Source:
INN:zilebesiran [INN]
Source URL:
Class:
NUCLEIC ACID
Status:
Investigational
Class:
NUCLEIC ACID
Status:
Investigational
Source:
INN:zorevunersen [INN]
Source URL:
Class:
NUCLEIC ACID
Status:
US Approved Rx
(2009)
Source:
ANDA090163
(2009)
Source URL:
First approved in 1999
Source:
NDA050778
Source URL:
Class:
POLYMER
Targets:
Conditions:
Epirubicin is an anthracycline cytotoxic agent, is a 4'-epi-isomer of doxorubicin. The compound is marketed by Pfizer under the trade name Ellence in the US. It is indicated as a component of adjuvant therapy in patients with evidence of axillary node tumor involvement following resection of primary breast cancer. Although it is known that anthracyclines can interfere with a number of biochemical and biological functions within eukaryotic cells, the precise mechanisms of epirubicin’s cytotoxic and/or antiproliferative properties have not been completely elucidated. It is known, that epirubicin forms a complex with DNA by intercalation of its planar rings between nucleotide base pairs, with consequent inhibition of nucleic acid (DNA and RNA) and protein synthesis. Such intercalation triggers DNA cleavage by topoisomerase II, resulting in cytocidal activity. Epirubicin also inhibits DNA helicase activity, preventing the enzymatic separation of double-stranded DNA and interfering with replication and transcription. Epirubicin is also involved in oxidation/reduction reactions by generating cytotoxic free radicals.
Status:
US Approved Rx
(2017)
Source:
ANDA206935
(2017)
Source URL:
First approved in 1996
Source:
NDA020571
Source URL:
Class:
POLYMER
Targets:
Conditions:
Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for:
• First-line therapy in combination with 5-fluorouracil and leucovorin for
patients with metastatic carcinoma of the colon or rectum.
• Patients with metastatic carcinoma of the colon or rectum whose disease
has recurred or progressed following initial fluorouracil-based therapy.
Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme
topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand
breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex
and prevent religation of these single-strand breaks. Current research suggests that the
cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis
when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA,
and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand
breaks.
Status:
US Approved Rx
(2017)
Source:
ANDA206935
(2017)
Source URL:
First approved in 1996
Source:
NDA020571
Source URL:
Class:
POLYMER
Targets:
Conditions:
Irinotecan is an antineoplastic enzyme inhibitor primarily used in the treatment of colorectal cancer. Irinotecan is sold under the brand name Camptosar among others. CAMPTOSAR is a topoisomerase inhibitor indicated for:
• First-line therapy in combination with 5-fluorouracil and leucovorin for
patients with metastatic carcinoma of the colon or rectum.
• Patients with metastatic carcinoma of the colon or rectum whose disease
has recurred or progressed following initial fluorouracil-based therapy.
Irinotecan is a derivative of camptothecin. Camptothecins interact specifically with the enzyme
topoisomerase I, which relieves torsional strain in DNA by inducing reversible single-strand
breaks. Irinotecan and its active metabolite SN-38 bind to the topoisomerase I-DNA complex
and prevent religation of these single-strand breaks. Current research suggests that the
cytotoxicity of irinotecan is due to double-strand DNA damage produced during DNA synthesis
when replication enzymes interact with the ternary complex formed by topoisomerase I, DNA,
and either irinotecan or SN-38. Mammalian cells cannot efficiently repair these double-strand
breaks.