{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
clindamycin palmitate
to a specific field?
Status:
US Approved Rx
(2012)
Source:
ANDA090979
(2012)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin phosphate is the prodrug of clindamycin with no antimicrobial activity in vitro but can be rapidly converted in vivo to the parent drug, clindamycin, by phosphatase ester hydrolysis. It is indicated in the treatment of serious infections caused by susceptible anaerobic bacteria: Lower respiratory tract infections including pneumonia, empyema, and lung abscess caused by anaerobes; Skin and skin structure infections; Gynecological infections including endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis, and postsurgical vaginal cuff infection caused by susceptible anaerobes; Intra-abdominal infections; Septicemia; Bone and joint infections. Orally and parenterally administered clindamycin has been associated with severe colitis, which may end fatally. Abdominal pain, gastrointestinal disturbances, gram-negative folliculitis, eye pain and contact dermatitis have also been reported in association with the use of topical formulations of clindamycin. Clindamycin has been shown to have neuromuscular blocking properties that may enhance the action of other neuromuscular blocking agents
Status:
US Approved Rx
(1990)
Source:
ANDA071868
(1990)
Source URL:
First approved in 1969
Source:
CYTARABINE by TEVA PARENTERAL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.
Status:
US Approved Rx
(2022)
Source:
ANDA216715
(2022)
Source URL:
First approved in 1955
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Status:
US Approved Rx
(2020)
Source:
ANDA212015
(2020)
Source URL:
First approved in 1952
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Erythromycin ethylsuccinate (E.E.S.®, ERY-PED®) is an ester of erythromycin base and succinic acid. It is suitable for oral administration. Erythromycin is a macrolide antibiotic, produced by Saccharopolyspora erythraea (formerly Streptomyces erythraeus). It acts primarily as a bacteriostatic agent. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erythromycin does not affect nucleic acid synthesis.
Status:
US Approved Rx
(2014)
Source:
ANDA204476
(2014)
Source URL:
First approved in 1952
Source:
NDA008316
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Primaquine is a oral medication used to treat and prevent malaria and to treat Pneumocystis pneumonia. Specifically it is used for malaria due to Plasmodium vivax and Plasmodium ovale along with other medications and for prevention if other options cannot be used. Primaquine is an alternative treatment for Pneumocystis pneumonia together with clindamycin. Primaquine is lethal to P. vivax and P. ovale in the liver stage, and also to P. vivax in the blood stage through its ability to do oxidative damage to the cell. However, the exact mechanism of action is not fully understood. Primaquine is well-absorbed in the gut and extensively distributed in the body without accumulating in red blood cells. Administration of primaquine with food or grapefruit juice increases its oral bioavailibity. In blood, about 20% of circulating primaquine is protein-bound, with preferential binding to the acute phase protein orosomucoid. With a half-life on the order of 6 hours, it is quickly metabolized by liver enzymes to carboxyprimaquine, which does not have anti-malarial activity. Common side effects of primaquine administration include nausea, vomiting, and stomach cramps. Primaquine phosphate is recommended only for the radical cure of vivax malaria, the prevention of relapse in vivax malaria, or following the termination of chloroquine phosphate suppressive therapy in an area where vivax malaria is endemic. Patients suffering from an attack of vivax malaria or having parasitized red blood cells should receive a course of chloroquine phosphate, which quickly destroys the erythrocytic parasites and terminates the paroxysm. Primaquine phosphate should be administered concurrently in order to eradicate the exoerythrocytic parasites in a dosage of 1 tablet (equivalent to 15 mg base) daily for 14 days.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.
Status:
US Approved Rx
(1982)
Source:
ANDA062365
(1982)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chloramphenicol is a broad-spectrum antibiotic that was first isolated from
Streptomyces venezuelae in 1947. The drug was subsequently chemically synthesized. It has both a bacteriostatic and bactericidal effect; in the usual therapeutic concentrations it is bacteriostatic. Chloramphenicol is used for the treatment of serious gram-negative, gram-positive, and anaerobic infections. It is especially useful in the treatment of meningitis, typhoid fever, and cystic fibrosis. It should be reserved for infections for which other drugs are ineffective or contraindicated. Chloramphenicol, a small inhibitor of bacterial protein synthesis, is active against a variety of bacteria and readily enters the CSF. It has been used extensively in the last decades for the treatment of bacterial meningitis. In industrialized countries, chloramphenicol is restricted mostly to topical uses because of the risk of induction of aplastic anemia. However, it remains a valuable reserve antibiotic for patients with allergy to β-lactam antibiotics or with CNS infections caused by multiresistant pathogens.