U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 411 - 420 of 657 results

structurally diverse
Status:
Other

Class:
STRUCTURALLY DIVERSE

Concept
Status:
Investigational
Source:
NCT01154387: Phase 1/Phase 2 Interventional Unknown status End Stage Renal Disease
(2010)
Source URL:

Class:
CONCEPT

Concept
Status:
Investigational
Source:
NCT02443155: Phase 2 Interventional Completed Diabetes
(2015)
Source URL:

Class:
CONCEPT

Sulopenem is a thiolanylthiopenem derivative patented by American multinational pharmaceutical corporation Pfizer Inc as an antibiotic with broad-spectrum antibacterial activity against most gram-positive and gram-negative bacteria. Sulopenem showed concentration-dependent bactericidal activities against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter calcoaceticus. Morphological observation using a phase-contrast microscope revealed that sulopenem induced spherical cell formation with E. coli and K. pneumoniae at lower concentrations and bacteriolysis at higher concentrations. Therapeutic efficacies of sulopenem against systemic infections in mice were almost equal to those of imipenem against Streptococcus pneumoniae.
Vilanterol (INN, USAN) is an ultra-long-acting β2 adrenoreceptor agonist (ultra-LABA), which was approved in May 2013 in combination with fluticasone furoate for sale as Breo Ellipta by GlaxoSmithKline for the treatment of chronic obstructive pulmonary disease (COPD). Its pharmacological effect is attributable to stimulation of intracellular adenylyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3’,5’-adenosine monophosphate (cAMP). Increases in cyclic AMP are associated with relaxation of bronchial smooth muscle and inhibition of release of hypersensitivity mediators from mast cells in the lungs. Vilanterol is available in following combinations: a) with inhaled corticosteroid fluticasone furoate — fluticasone furoate/vilanterol (trade names Breo Ellipta , Relvar Ellipta; b) with muscarinic antagonist umeclidinium bromide — umeclidinium bromide/vilanterol (trade name Anoro Ellipta).
Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Nebivolol is a competitive and highly selective beta-1 receptor antagonist with mild vasodilating properties, possibly due to an interaction with the L-arginine/nitric oxide pathway. In preclinical studies, nebivolol has been shown to induce endothelium-dependent arterial relaxation in a dose dependent manner, by stimulation of the release of endothelial nitric oxide. Nitric oxide acts to relax vascular smooth muscle cells and inhibits platelet aggregation and adhesion. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Nebivolol blocks these receptors which reverses the effects of epinephrine, lowering the heart rate and blood pressure. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. At high enough concentrations, this drug may also bind beta 2 receptors. Marketed under the brand name BYSTOLIC, Nebivolol is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions.
Nebivolol is a competitive and highly selective beta-1 receptor antagonist with mild vasodilating properties, possibly due to an interaction with the L-arginine/nitric oxide pathway. In preclinical studies, nebivolol has been shown to induce endothelium-dependent arterial relaxation in a dose dependent manner, by stimulation of the release of endothelial nitric oxide. Nitric oxide acts to relax vascular smooth muscle cells and inhibits platelet aggregation and adhesion. Activation of β1-receptors by epinephrine increases the heart rate and the blood pressure, and the heart consumes more oxygen. Nebivolol blocks these receptors which reverses the effects of epinephrine, lowering the heart rate and blood pressure. In addition, beta blockers prevent the release of renin, which is a hormone produced by the kidneys which leads to constriction of blood vessels. At high enough concentrations, this drug may also bind beta 2 receptors. Marketed under the brand name BYSTOLIC, Nebivolol is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions.

Showing 411 - 420 of 657 results