{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m clopidogrel
to a specific field?
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(2024)
Source:
ANDA215178
(2024)
Source URL:
First approved in 1974
Source:
DOXORUBICIN HYDROCHLORIDE by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Doxorubicin is an antineoplastic in the anthracycline class. General properties of drugs in this class include: interaction with DNA in a variety of different ways including intercalation (squeezing between the base pairs), DNA strand breakage and inhibition with the enzyme topoisomerase II. Most of these compounds have been isolated from natural sources and antibiotics. However, they lack the specificity of the antimicrobial antibiotics and thus produce significant toxicity. The anthracyclines are among the most important antitumor drugs available. Doxorubicin is widely used for the treatment of several solid tumors while daunorubicin and idarubicin are used exclusively for the treatment of leukemia. Doxorubicin may also inhibit polymerase activity, affect regulation of gene expression, and produce free radical damage to DNA. Doxorubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Doxorubicin is used to produce regression in disseminated neoplastic conditions like acute lymphoblastic leukemia, acute myeloblastic leukemia, Wilms’ tumor, neuroblastoma, soft tissue and bone sarcomas, breast carcinoma, ovarian carcinoma, transitional cell bladder carcinoma, thyroid carcinoma, gastric carcinoma, Hodgkin’s disease, malignant lymphoma and bronchogenic carcinoma in which the small cell histologic type is the most responsive compared to other cell types. Doxorubicin is also indicated for use as a component of adjuvant therapy in women with evidence of axillary lymph node involvement following resection of primary breast cancer.
Status:
US Approved Rx
(1990)
Source:
NDA019785
(1990)
Source URL:
First approved in 1973
Source:
NDA017243
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Molybdenum-99 (99Mo, half-life = 66 h) is a parent radionuclide of a diagnostic nuclear isotope. It decays in technetium-99 m (half-life = 6 h), which is used in over 30 million procedures per year around the world. Between 95 and 98 percent of Mo-99 is currently being produced using highly enriched uranium (HEU) targets. Other medical isotopes such as iodine-131 (I-131) and xenon-133 (Xe-133) are by-products of the Mo-99 production process and will be sufficiently available if Mo-99 is available.
Status:
US Approved Rx
(2024)
Source:
ANDA216108
(2024)
Source URL:
First approved in 1973
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.
Status:
US Approved Rx
(1990)
Source:
ANDA071868
(1990)
Source URL:
First approved in 1969
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.
Status:
US Approved Rx
(1990)
Source:
ANDA071868
(1990)
Source URL:
First approved in 1969
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cytarabine is a pyrimidine nucleoside analog. Cytarabine or cytosine arabinoside (Cytosar-U or Depocyt) is a chemotherapy agent used mainly in the treatment of cancers of white blood cells such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It also has antiviral and immunosuppressant properties. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. It is a cell cycle phase-specific, affecting cells only during the S phase of cell division. Intracellularly, cytarabine is converted into cytarabine-5-triphosphate (ara-CTP), which is the active metabolite. The mechanism of action is not completely understood, but it appears that ara-CTP acts primarily through inhibition of DNA polymerase. Incorporation into DNA and RNA may also contribute to cytarabine cytotoxicity. Cytarabine is cytotoxic to a wide variety of proliferating mammalian cells in culture.The drug has a short plasma half-life, low stability and limited bioavailability. Overdosing of patients with continuous infusions may lead to side effects. Thus, various prodrug strategies and delivery systems have been explored extensively to enhance the half-life, stability and delivery of cytarabine. Alternative, delivery systems of cytarabine have emerged for the treatment of different cancers. The liposomal-cytarabine formulation has been approved for the treatment of lymphomatous meningitis.