{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m clopidogrel
to a specific field?
Status:
US Approved Rx
(2013)
Source:
NDA203389
(2013)
Source URL:
First approved in 1994
Source:
NDA020392
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(2009)
Source:
ANDA079070
(2009)
Source URL:
First approved in 1993
Source:
ACEON by SYMPLMED PHARMS LLC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Perindoprilat is a metabolite of perindopril. Perindopril is a long-acting angiotensin converting enzyme (ACE) inhibitor and it is used to treat high blood pressure, heart failure or stable coronary artery disease. Perindopril is designed to allow oral administration as perindoprilat is poorly absorbed from the gastrointestinal tract.
Status:
US Approved Rx
(1993)
Source:
NDA020191
(1993)
Source URL:
First approved in 1993
Source:
NDA020191
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Lodoxamide is a mast-cell stabilizer for topical administration into the eye. This compound belongs to the class of organic compounds known as alpha amino acids and derivatives. Lodoxamide inhibits the in vivo Type I immediate hypersensitivity reaction. In vitro, Lodoxamide stabilizes mast cells and prevents antigen-stimulated release of histamine. In addition, Lodoxamide prevents the release of other mast cell inflammatory mediators and inhibits eosinophil chemotaxis. Although Lodoxamide's precise mechanism of action is unknown, the drug has been reported to prevent calcium influx into mast cells upon antigen stimulation. Among side effects to Lodoxamide, the most frequently reported ocular adverse experiences were transient burning, stinging, or discomfort upon instillation. Nonocular events reported were headache and heat sensation, dizziness, somnolence, nausea, stomach discomfort, sneezing, dry nose, and rash.
Status:
US Approved Rx
(2005)
Source:
NDA021660
(2005)
Source URL:
First approved in 1992
Source:
TAXOL by HQ SPCLT PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(2005)
Source:
NDA021660
(2005)
Source URL:
First approved in 1992
Source:
TAXOL by HQ SPCLT PHARMA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(2005)
Source:
NDA021660
(2005)
Source URL:
First approved in 1992
Source:
TAXOL by HQ SPCLT PHARMA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. When it was developed commercially by Bristol-Myers Squibb (BMS), the generic name was changed to paclitaxel and the BMS compound is sold under the trademark Taxol. In this formulation, paclitaxel is dissolved in Kolliphor EL and ethanol, as a delivery agent. Taxol is marketed for the treatment of Breast cancer; Gastric cancer; Kaposi's sarcoma; Non-small cell lung cancer; Ovarian cancer. A newer formulation, in which paclitaxel is bound to albumin, is sold under the trademark Abraxane. Paclitaxel is a taxoid antineoplastic agent indicated as first-line and subsequent therapy for the treatment of advanced carcinoma of the ovary, and other various cancers including breast cancer. Paclitaxel is a novel antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilizes microtubules by preventing depolymerization. This stability results in the inhibition of the normal dynamic reorganization of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or "bundles" of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis. Used in the treatment of Kaposi's sarcoma and cancer of the lung, ovarian, and breast. Abraxane® is specfically indicated for the treatment of metastatic breast cancer and locally advanced or metastatic non-small cell lung cancer. Paclitaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, paclitaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, paclitaxel binds to the β subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of paclitaxel locks these building blocks in place. The resulting microtubule/paclitaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that paclitaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.