U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 234 results

Status:
First approved in 1968
Source:
Veracillin by Ayerst
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Dicloxacillin sodium USP is a semisynthetic antibiotic substance which resists destruction by the enzyme penicillinase (beta-lactamase). It is monosodium (2S,5R,6R)-6-[3-(2,6-dichlorophenyl)-5-methyl-4- isoxazolecarboxamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylate monohydrate. Like other β-lactam antibiotics, dicloxacillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. Dicloxacillin is administered orally via capsule form or powder for reconstitution.
Acetylcysteine (also known as N-acetylcysteine or N-acetyl-L-cysteine or NAC) is primarily used as a mucolytic agent and in the management of acetaminophen poisoning. Acetylcysteine likely protects the liver by maintaining or restoring the glutathione levels, or by acting as an alternate substrate for conjugation with, and thus detoxification of, the reactive metabolite. Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC) is known to have excellent mucolytic capabilities and is used to treat cystic fibrosis (CF) lung disease. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. The potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. Acetylcysteine serves as a prodrug to L-cysteine, which is a precursor to the biologic antioxidant, glutathione, and hence administration of acetylcysteine replenishes glutathione stores. L-cysteine also serves as a precursor to cystine, which in turn serves as a substrate for the cystine-glutamate antiporter on astrocytes hence increasing glutamate release into the extracellular space. Acetylcysteine also possesses some anti-inflammatory effects possibly via inhibiting NF-κB through redox activation of the nuclear factor kappa kinases thereby modulating cytokine synthesis. NAC is associated with reduced levels of inflammatory cytokines and acts as a substrate for glutathione synthesis. These actions are believed to converge upon mechanisms promoting cell survival and growth factor synthesis, leading to increased neurite sprouting.
Sulfasalazine is an anti-inflammatory indicated for the treatment of ulcerative colitis and rheumatoid arthritis. The mode of action of Sulfasalazine or its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), is still under investigation, but may be related to the anti-inflammatory and/or immunomodulatory properties that have been observed in animal and in vitromodels, to its affinity for connective tissue, and/or to the relatively high concentration it reaches in serous fluids, the liver and intestinal walls, as demonstrated in autoradiographic studies in animals. In ulcerative colitis, clinical studies utilizing rectal administration of Sulfasalazine, SP and 5-ASA have indicated that the major therapeutic action may reside in the 5-ASA moiety. The relative contribution of the parent drug and the major metabolites in rheumatoid arthritis is unknown. Sulfasalazine is used for the treatment of Crohn's disease and rheumatoid arthritis as a second-line agent. Sulfasalazine is marketed under the trade name Azulfidine among others.
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
Investigational
Source:
NCT04671303: Phase 2 Interventional Unknown status Lung Cancer
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



AST-1306, also known as Allitinib, is an orally active potent, selective, irreversible inhibitor of the HER family of receptor tyrosine kinases. AST-1306 inhibits the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu) transgenic breast cancer mouse models. Allitinib is in Phase I clinical trial for the treatment of advanced solid tumors. Serious adverse effects detected were: diarrhea, dehydration and hyperbilirubinemia.
Status:
Investigational
Source:
NCT03212430: Phase 1 Interventional Completed Headache
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Kynurenine is a metabolite of the amino acid L-tryptophan used in the production of niacin. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Evidence suggests that increased kynurenine production may precipitate depressive symptoms associated with interferon treatment for hepatitis C. Cognitive deficits in schizophrenia are associated with imbalances in the enzymes that break down kynurenine. Kynurenine production is increased in Alzheimer's disease and cardiovascular disease where its metabolites are associated with cognitive deficits and depressive symptoms.
Status:
Investigational
Source:
INN:firsocostat [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:laromustine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

LAROMUSTINE is a sulfonylhydrazine alkylating agent. It is metabolized to yield a chloroethylating compound (VNP-4090-CE) and a carbamoylating compound (methyl isocyanate). The former is primarily responsible for the antineoplastic effect of LAROMUSTINE. It alkylates the O6 position of guanine, resulting in DNA crosslinking, strand breaks, chromosomal aberrations, and disruption of DNA synthesis. The carbamoylating species contribute to antitumor activity by inhibiting O6-alkylguanine transferase, an enzyme involved with DNA repair. It was studied in the treatment of several types of cancer, however, its development was discontinued.
Status:
Investigational
Source:
JAN:FEVIPIPRANT [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Fevipiprant is a selective reversible antagonist of the prostaglandin D2 receptor (also known as CRTH2). It is currently in development for the treatment of allergic diseases.