U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 371 - 380 of 3321 results

The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. One of these compounds, mitomycin C, finds use as a chemotherapeutic agent by virtue of its antitumour activity. Mitomycin C has also been used topically rather than intravenously in several areas. The first is cancers, particularly bladder cancers and intraperitoneal tumours. It is now well known that a single instillation of this agent within 6 hours of bladder tumor resection can prevent recurrence. The second is in eye surgery where mitomycin C 0.02% is applied topically to prevent scarring during glaucoma filtering surgery and to prevent haze after PRK or LASIK; mitomycin C has also been shown to reduce fibrosis in strabismus surgery. The third is in esophageal and tracheal stenosis where application of mitomycin C onto the mucosa immediately following dilatation will decrease re-stenosis by decreasing the production of fibroblasts and scar tissue. Mitomycin C is a potent DNA crosslinker. A single crosslink per genome has shown to be effective in killing bacteria. This is accomplished by reductive activation of mitomycin to form a mitosene, which reacts successively via N-alkylation of two DNA bases. Both alkylations are sequence specific for a guanine nucleoside in the sequence 5'-CpG-3'. Potential bis-alkylating heterocylic quinones were synthetised in order to explore their antitumoral activities by bioreductive alkylation. Mitomycin is also used as a chemotherapeutic agent in glaucoma surgery.
Dantrolene is a drug which was approved by FDA for the treatment of chronic spasticity and malignant hyperthermia (a rare life-threatening clinical syndrome). Dantrolene effect was shown both in vivo and in vitro and proved to be mediated by interaction with Ryanodine receptor 1. The drug has a potential for hepatotoxicity and should be used as indicated in the label.
Cromolyn is a mast cell stabilizer. In vitro and in vivo animal studies have shown that cromolyn sodium inhibits the degranulation of sensitized mast cells, which occurs after exposure to specific antigens. Cromolyn sodium acts by inhibiting the release of histamine and SRS-A (slow-reacting substance of anaphylaxis) from the mast cell. Cromolyn is indicated in the management of patients with mastocytosis, prophylaxis (long-term control) of bronchial asthma, prevention of exercise-induced bronchospasm, prevention and treatment of seasonal and perennial allergic rhinitis The most frequently reported adverse reactions attributed to cromolyn sodium treatment were: throat irritation or dryness, bad taste, cough, wheeze, nausea.
Status:
First approved in 1973
Source:
Pondimin by Robins
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.
Status:
First approved in 1973

Class (Stereo):
CHEMICAL (ACHIRAL)



Diazoxide is a drug which was approved by FDA for the treatment of secondary hyperinsulinemia. The drug exerts its action by binding to SUR1 subunit of ATP-sensitive potassium channel that leads to the channel opening.

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Bupivacaine is a widely used local anesthetic agent. Bupivacaine is often administered by spinal injection prior to total hip arthroplasty. It is also commonly injected into surgical wound sites to reduce pain for up to 20 hours after surgery. In comparison to other local anesthetics it has a long duration of action. It is also the most toxic to the heart when administered in large doses. Bupivacaine blocks the generation and the conduction of nerve impulses, presumably by increasing the threshold for electrical excitation in the nerve, by slowing the propagation of the nerve impulse, and by reducing the rate of rise of the action potential. Bupivacaine binds to the intracellular portion of sodium channels and blocks sodium influx into nerve cells, which prevents depolarization. In general, the progression of anesthesia is related to the diameter, myelination and conduction velocity of affected nerve fibers. The analgesic effects of bupivicaine are thought to potentially be due to its binding to the prostaglandin E2 receptors, subtype EP1 (PGE2EP1), which inhibits the production of prostaglandins, thereby reducing fever, inflammation, and hyperalgesia. Bupivacaine sometimes used in combination with epinephrine to prevent systemic absorption and extend the duration of action.
Status:

Class (Stereo):
CHEMICAL (ACHIRAL)


Dimethyl sulfoxide (DMSO) is a clear odorless liquid, inexpensively produced as a by-product of the paper industry. It is widely available in the USA as a solvent but its medical use is currently restricted by the FDA to the palliative treatment of interstitial cystitis and to certain experimental applications. In medicine, DMSO is also used as a topical analgesic, a vehicle for topical application of pharmaceuticals, as an anti-inflammatory, and an antioxidant.
Status:
First approved in 1972
Source:
Hydromorphone Hydrochloride by Hikma Pharmaceuticals USA Inc.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Hydromorphone (also known as dihydromorphinone and the brand name Dilaudid among others) is a more potent opioid analgesic than morphine and is used for moderate to severe pain. It can be administered by injection, by infusion, by mouth, and rectally. Oral bioavailability is low. The kidney excretes hydromorphone and its metabolites. Some metabolites may have greater analgesic activity than hydromorphone itself but are unlikely to contribute to the pharmacological activity of hydromorphone. With the exception of pruritus, sedation and nausea and vomiting, which may occur less after hydromorphone than after morphine, the side-effects of these drugs are similar. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. It also binds with kappa and delta receptors which are thought to mediate spinal analgesia, miosis and sedation.
Rifampin is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. It is FDA approved for the treatment of tuberculosis, meningococcal carrier state. Healthy subjects who received rifampin 600 mg once daily concomitantly with saquinavir 1000 mg/ritonavir 100 mg twice daily (ritonavir-boosted saquinavir) developed severe hepatocellular toxicity. Rifampin has been reported to substantially decrease the plasma concentrations of the following antiviral drugs: atazanavir, darunavir, fosamprenavir, saquinavir, and tipranavir. These antiviral drugs must not be co-administered with rifampin. Common adverse reactions include heartburn, epigastric distress, anorexia, nausea, vomiting, jaundice, flatulence, cramps.