{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
alpha-tocopherol acetate
to a specific field?
Status:
US Approved Rx
(2018)
Source:
ANDA207567
(2018)
Source URL:
First approved in 1985
Source:
NDA019194
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Trientine, also known as triethylenetatramine or abbreviation TETA, is a highly selective divalent Cu(II) chelator and orphan drug that reverses copper overload in tissues. It was approved as second-line pharmacotherapy for Wilson's disease. Wilson's disease (hepatolenticular degeneration) is an autosomal inherited metabolic defect resulting in an inability to maintain a near-zero balance of copper. Excess copper accumulates possibly because the liver lacks the mechanism to excrete free copper into the bile. Hepatocytes store excess copper but when their capacity is exceeded copper is released into the blood and is taken up into extrahepatic sites. This condition is treated with a low copper diet and the use of chelating agents that bind copper to facilitate its excretion from the body. Although penicillamine treatment is believed to be more extensive, TETA therapy has been shown to be an effective initial therapy. In addition, TETA is in a clinical trial phase II for the prevention of the Macular Edema after Cataract Surgery. TETA is also considered a potential chemotherapeutic agent as it could be a telomerase inhibitor. Chelating excess copper may affect copper-induced angiogenesis. Other mechanisms of action of TETA for alternative therapeutic implications include improved antioxidant defense against oxidative stress, pro-apoptosis, and reduced inflammation.
Status:
US Approved Rx
(2006)
Source:
ANDA077743
(2006)
Source URL:
First approved in 1985
Source:
NDA018859
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ribavirin is a synthetic nucleoside analogue, which was first discovered and developed in 1970 by researchers from the International Chemical & Nuclear Corporation (ICN), today known as Valeant Pharmaceuticals. Ribavirin was initially approved for use in humans to treat pediatric respiratory syncytial virus infections (RSV). In cell cultures the inhibitory activity of ribavirin for RSV is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites. There were no other significant advancements in the treatment of hepatitis C until 1998, when the combination of ribavirin and interferon-alpha gained approval. Clinically, ribavirin showed a small, additive antiviral effect in combination with interferon, but its main effect was dose-dependent prevention of virological relapse. The mechanism by which the combination of ribavirin and an interferon product exerts its effects against the hepatitis C virus has not been fully established. However, it could be thorough the inhibition of inosine monophosphate dehydrogenase (IMPDH), which is the key step in de novo guanine synthesis, a requirement for viral replication.
Status:
US Approved Rx
(2007)
Source:
ANDA065374
(2007)
Source URL:
First approved in 1985
Source:
CEFOTAN by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC-AXIAL)
Conditions:
Cefotetan is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. It is FDA approved for the treatment of urinary tract infection, lower respiratory tract infection, skin and skin structure infections, gynecologic infection, intra-abdominal infection, and bone and joint infection; and for prophylaxis of postoperative infection. The bactericidal action of cefotetan results from inhibition of cell wall synthesis. The methoxy group in the 7-alpha position provides cefotetan with a high degree of stability in the presence of beta-lactamases including both penicillinases and cephalosporinase of gram-negative bacteria. Common adverse reactions include diarrhea and nausea. As with other cephalosporins, high concentrations of cefotetan may interfere with measurement of serum and urine creatinine levels.
Status:
US Approved Rx
(2023)
Source:
ANDA215382
(2023)
Source URL:
First approved in 1985
Source:
NDA018735
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Iopamidol is a nonionic, low-osmolar iodinated contrast agent. Iopamidol is indicated for angiography, pediatric angiocardiography, selective visceral arteriography and aortography, peripheral venography, and adult and pediatric intravenous excretory urography and intravenous adult and pediatric contrast enhancement of computed tomographic. Renal toxicity has been reported in a few patients with liver dysfunction who were given oral cholecystographic agents followed by intravascular contrast agents. Intravascular injection of contrast media is frequently associated with the sensation of warmth and pain especially in peripheral arteriography and venography. In angiocardiography the adverse reactions are: hot flashes, angina pectoris, flushing, bradycardia, hypotension, hives.
Status:
US Approved Rx
(2021)
Source:
ANDA214533
(2021)
Source URL:
First approved in 1984
Source:
NDA018716
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Targets:
Conditions:
Labetalol is a blocker of both alpha- and beta-adrenergic receptors that is used as an antihypertensive. It may be used alone or in combination with other antihypertensive agents, especially thiazide and loop diuretics. The capacity of labetalol HCl to block alpha receptors in man has been demonstrated by attenuation of the pressor effect of phenylephrine and by a significant reduction of the pressor response caused by immersing the hand in ice-cold water ("cold-pressor test"). Labetalol HCl's beta1-receptor blockade in man was demonstrated by a small decrease in the resting heart rate, attenuation of tachycardia produced by isoproterenol or exercise, and by attenuation of the reflex tachycardia to the hypotension produced by amyl nitrite. Beta2-receptor blockade was demonstrated by inhibition of the isoproterenol-induced fall in diastolic blood pressure. Both the alpha- and beta-blocking actions of orally administered labetalol HCl contribute to a decrease in blood pressure in hypertensive patients. Labetalol HCl consistently, in dose-related fashion, blunted increases in exercise-induced blood pressure and heart rate, and in their double product. The pulmonary circulation during exercise was not affected by labetalol HCl dosing. Single oral doses of labetalol HCl administered to patients with coronary artery disease had no significant effect on sinus rate, intraventricular conduction, or QRS duration. The atrioventricular (A-V) conduction time was modestly prolonged in two of seven patients. In another study, IV labetalol HCl slightly prolonged A-V nodal conduction time and atrial effective refractory period with only small changes in heart rate. The metabolism of labetalol is mainly through conjugation to glucuronide metabolites. These metabolites are present in plasma and are excreted in the urine and, via the bile, into the feces. Approximately 55% to 60% of a dose appears in the urine as conjugates or unchanged labetalol within the first 24 hours of dosing. Labetalol has been shown to cross the placental barrier in humans. Only negligible amounts of the drug crossed the blood-brain barrier in animal studies. Labetalol is approximately 50% protein bound. Neither hemodialysis nor peritoneal dialysis removes a significant amount of labetalol HCl from the general circulation.
Status:
US Approved Rx
(2017)
Source:
ANDA207905
(2017)
Source URL:
First approved in 1984
Source:
REVIA by TEVA WOMENS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Naltrexone is marketed as its hydrochloride salt, naltrexone hydrochloride, under the trade names Revia and Depade. A once-monthly extended-release injectable formulation is marketed under the trade name Vivitrol. VIVITROL is indicated for the treatment of alcohol dependence in patients who are able to abstain from alcohol in an outpatient setting prior to initiation of treatment with VIVITROL. VIVITROL is indicated for the prevention of relapse to opioid dependence, following opioid detoxification. Naltrexone is a pure opiate antagonist and has little or no agonist activity. The mechanism of action of naltrexone in alcoholism is not understood; however, involvement of the endogenous opioid system is suggested by preclinical data. Naltrexone is thought to act as a competitive antagonist at mc, κ, and δ receptors in the CNS, with the highest affinity for the μ receptor. Naltrexone competitively binds to such receptors and may block the effects of endogenous opioids. This leads to the antagonization of most of the subjective and objective effects of opiates, including respiratory depression, miosis, euphoria, and drug craving. The major metabolite of naltrexone, 6-β-naltrexol, is also an opiate antagonist and may contribute to the antagonistic activity of the drug. Low dose naltrexone is an “off label” use of naltrexone. Normal naltrexone usage to break addictions is 50mg – 100mg. Usage of low dose naltrexone ranges in the area of 3 mg – 4.5 mg dosing and is prescribed in an oral pill form and is quite inexpensive. For people with multiple sclerosis, the dosage of LDN ranges from 1.5 to 4.5 ml per day.
Status:
US Approved Rx
(2004)
Source:
ANDA076789
(2004)
Source URL:
First approved in 1984
Source:
NDA018612
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Nicotine is a natural alkaloid obtained from the dried leaves and stems of the nightshade family of pants, such as Nicotiana tabacum and Nicotiana rustica, where it occurs in concentrations of 0.5-8%. Cigarette tobacco varies in its nicotine content, but common blends contain 15-25 mg per cigarette, with a current trend towards lower levels. Nicotine is highly addictive substance, it exhibits a stimulant effect when adsorbed at 2 mg. Administration of higher doses could be harmful. Action of nicotine is mediated by nicotinic cholinergic receptors. Nicotine binds to the interface between two subunits of the receptors, opens the channel and allows the entry of sodium or calcium. The principal mediator of nicotine dependence is α4β2 nicotine receptor.
Status:
US Approved Rx
(2006)
Source:
ANDA065180
(2006)
Source URL:
First approved in 1984
Source:
ROCEPHIN by HOFFMANN LA ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Status:
US Approved Rx
(2024)
Source:
NDA216483
(2024)
Source URL:
First approved in 1984
Source:
COACTIN by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Amdinocillin is a novel, semisynthetic penicillin effective against many gram-negative bacteria. The antibacterial activity of amdinocillin is derived from its ability to bind specifically and avidly to Penicillin Binding Protein-2 (PBP 2). Amdinocillin is active alone against many gram-negative organisms. Pseudomonas and non-fermenting gram-negative bacteria, however, are usually resistant. Amdinocillin, in combination with many beta-lactams, exhibits marked synergy against many enterobacteriaceae. No such synergy can be demonstrated for gram-positive organisms or pseudomonas species. Amdinocillin is not beta-lactamase stable. Organisms which produce high levels of plasma-mediated beta-lactamase are resistant to the drug. Used in the treatment of urinary tract infections caused by some strains of E. coli and klebsiella and enterobacter species. Used mainly against Gram negative organisms. Amdinocillin is not available in the United States.
Status:
US Approved Rx
(1995)
Source:
ANDA074413
(1995)
Source URL:
First approved in 1984
Source:
NDA019050
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Sufentanil is a synthetic opioid analgesic. Sufentanil interacts predominately with the opioid mu-receptor. These mu-binding sites are discretely distributed in the human brain, spinal cord, and other tissues. In clinical settings, sufentanil exerts its principal pharmacologic effects on the central nervous system. Its primary actions of therapeutic value are analgesia and sedation. Sufentanil may increase the patient's tolerance for pain and decrease the perception of suffering, although the presence of the pain itself may still be recognized. In addition to analgesia, alterations in mood, euphoria and dysphoria, and drowsiness commonly occur. Sufentanil depresses the respiratory centers, depresses the cough reflex, and constricts the pupils. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanil's analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. Sufentanil is used as an analgesic adjunct in anesthesia and as a primary anesthetic drug in procedures requiring assisted ventilation and in the relief of pain.