{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_relationships_comments in Relationship Comments (approximate match)
Status:
US Approved Rx
(2016)
Source:
ANDA204060
(2016)
Source URL:
First approved in 1999
Source:
AGENERASE by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amprenavir is an inhibitor of HIV-1 protease. Amprenavir binds to the active site of HIV-1 protease and thereby prevents the processing of viral gag and gag-pol polyprotein precursors, resulting in the formation of immature non-infectious viral particles. Amprenavir-containing combination regimens have shown virological efficacy, and have generally been well tolerated, in patients with HIV infection (primarily treatment-naive or protease inhibitor-naive). Fosamprenavir (GW433908, Lexiva, Telzir) is an oral prodrug of amprenavir, with a reduced daily pill burden. The use of protease inhibitors has also been associated with dyslipidemia and an increased risk of cardiovascular disease. Amprenavir activates Pregnane X receptor to mediate dyslipidemia.
Status:
US Approved Rx
(2020)
Source:
ANDA208691
(2020)
Source URL:
First approved in 1999
Source:
NDA021083
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sirolimus is the USAN-assigned generic name for the natural product rapamycin. Sirolimus is produced by a strain of Streptomyces hygroscopicus, isolated from a soil sample collected from Rapa Nui commonly known as Easter Island. Although sirolimus was isolated as an antifungal agent with potent anticandida activity, subsequent studies revealed impressive antitumor and immunosuppressive activities. Sirolimus demonstrates activity against several murine tumors, such as B16 43 melanocarcinoma, Colon 26 tumor, EM ependymoblastoma, and mammary and colon 38 solid tumors. Demonstration of the potent immunosuppressive activity of sirolimus in animal models of organ transplantation led to clinical trials and subsequent approval by regulatory authorities for prophylaxis of renal graft rejection. Interest in sirolimus as an immunosuppressive therapy in organ transplantation derives from its unique mechanism of action, its unique side-effect profile, and its ability to synergize with other immunosuppressive agents. It is used in medicine to prevent organ transplant rejection and to treat lymphangioleiomyomatosis. Sirolimus inhibits T-lymphocyte activation and proliferation that occurs in response to antigenic and cytokine (Interleukin [IL]-2, IL-4, and IL-15) stimulation by a mechanism that is distinct from that of other immunosuppressants. Sirolimus also inhibits antibody production. In cells, sirolimus binds to the immunophilin, FK Binding Protein-12 (FKBP-12), to generate an immunosuppressive complex. This complex blocks the activation of the cell-cycle-specific kinase, TOR. The downstream events that follow the inactivation of TOR result in the blockage of cell-cycle progression at the juncture of G1 and S phase. Rapamycin/FKBP12 efficiently inhibit some, but not all, functions of mTOR and hence much interest has been placed in the development of drugs that target the kinase activity of mTOR directly. Studies in experimental models show that sirolimus prolongs allograft (kidney, heart, skin, islet, small bowel, pancreatico-duodenal, and bone marrow) survival in mice, rats, pigs, and/or primates. Sirolimus reverses acute rejection of heart and kidney allografts in rats and prolongs the graft survival in presensitized rats. In some studies, the immunosuppressive effect of sirolimus lasts up to 6 months after discontinuation of therapy. This tolerization effect is alloantigen-specific. In rodent models of autoimmune disease, sirolimus suppresses immune-mediated events associated with systemic lupus erythematosus, collagen-induced arthritis, autoimmune type I diabetes, autoimmune myocarditis, experimental allergic encephalomyelitis, graft-versus-host disease, and autoimmune uveoretinitis. Lymphangioleiomyomatosis involves lung tissue infiltration with smooth muscle-like cells that harbor inactivating mutations of the tuberous sclerosis complex (TSC) gene (LAM cells). Loss of TSC gene function activates the mTOR signaling pathway, resulting in cellular proliferation and release of lymphangiogenic growth factors. Sirolimus inhibits the activated mTOR pathway and thus the proliferation of LAM cells.
Status:
US Approved Rx
(2014)
Source:
ANDA204165
(2014)
Source URL:
First approved in 1997
Source:
NDA020839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clopidogrel, an antiplatelet agent structurally and pharmacologically similar to ticlopidine, is used to inhibit blood clots in a variety of conditions such as peripheral vascular disease, coronary artery disease, and cerebrovascular disease. Clopidogrel is sold under the name Plavix by Sanofi and Bristol-Myers Squibb. Plavix (clopidogrel bisulfate) is an inhibitor of ADP-induced platelet aggregation acting by direct
inhibition of adenosine diphosphate (ADP) binding to its receptor and of the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex. Clopidogrel must be metabolized by CYP450 enzymes to produce the active metabolite that
inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the
binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADPmediated
activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet
aggregation. This action is irreversible. Consequently, platelets exposed to clopidogrel’s active
metabolite are affected for the remainder of their lifespan (about 7 to 10 days). Platelet
aggregation induced by agonists other than ADP is also inhibited by blocking the amplification
of platelet activation by released ADP. Plavix (clopidogrel bisulfate) is indicated for the reduction of atherothrombotic events.
Status:
US Approved Rx
(2016)
Source:
ANDA206384
(2016)
Source URL:
First approved in 1997
Source:
NDA020815
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Raloxifene (marketed as Evista by Eli Lilly and Company) is an oral selective estrogen receptor modulator (SERM) that has estrogenic actions on bone and anti-estrogenic actions on the uterus and breast. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibition of their proliferative capacity. This inhibition is thought to contribute to the drug's effect on bone resorption. Other mechanisms include the suppression of the activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechanism of action of raloxifene has not been fully determined, but evidence suggests that the drug's tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. Raloxifene is indicated for the treatment and prevention of osteoporosis in postmenopausal women. It is also used for reduction of risk and treatment of invasive breast cancer, and it also reduces breast density. For either osteoporosis treatment or prevention, supplemental calcium and/or vitamin D should be added to the diet if daily intake is inadequate. Common adverse events considered to be drug-related were hot flashes and leg cramps.
Status:
US Approved Rx
(2022)
Source:
ANDA216462
(2022)
Source URL:
First approved in 1996
Source:
NDA020573
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sodium phenylbutyrate is a salt of an aromatic fatty acid. The compound is used to treat urea cycle disorders, because its metabolites offer an alternative pathway to the urea cycle to allow excretion of excess nitrogen. Sodium phenylbutyrate is also a histone deacetylase inhibitor and chemical chaperone, leading respectively to research into its use as an anti-cancer agent and in protein misfolding diseases such as cystic fibrosis. It is used as adjunctive therapy for the management of chronic urea cycle disorders due to deficiencies in carbamylphosphate (CPS), ornithine transcarbamylase (OTC), or argininosuccinic acid synthetase. It is indicated in all neonatal- onset efficiency presenting within the first 28 days of life. Also indicated in patients with late-onset, presenting after the first month of life with a history of hyperammonemic encephalopathy. Sodium phenylbutyrate is a pro-drug and is rapidly metabolized to phenylacetate. Phenylacetate is a metabolically active compound that conjugates with glutamine via acetylation to form phenylacetylglutamine. The kidneys then excrete Phenylacetylglutamine. PBA (phenylbutyric acid) is absorbed from the intestine and converted by way of β-oxidation to the active moiety, phenylacetic acid (PAA). PAA is conjugated with glutamine in the liver and kidney by way of N-acyl coenzyme A-l-glutamine N-acyltransferase to form phenylacetylglutamine (PAGN). Like urea, PAGN incorporates two waste nitrogens and is excreted in the urine. On a molar basis, it is comparable to urea (each containing two moles of nitrogen). Therefore, phenylacetylglutamine provides an alternate vehicle for waste nitrogen excretion.
Status:
US Approved Rx
(2017)
Source:
ANDA207563
(2017)
Source URL:
First approved in 1996
Source:
NDA020449
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Docetaxel was protected by patents (U.S. patent and European patent) which were owned by Sanofi-Aventis, and so was available only under the Taxotere brand name internationally. The European patent expired in 2010. Docetaxel is a clinically well-established anti-mitotic chemotherapy medication used for the treatment of patients with locally advanced or metastatic breast cancer after failure of prior chemotherapy. Also used as a single agent in the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior platinum-based chemotherapy. It is also used in combination with prednisone, in the treatment of patients with androgen independent (hormone refractory) metastatic prostate cancer. Furthermore, docetaxel has uses in the treatment of gastric adenocarcinoma and head and neck cancer. Docetaxel interferes with the normal function of microtubule growth. Whereas drugs like colchicine cause the depolymerization of microtubules in vivo, docetaxel arrests their function by having the opposite effect; it hyper-stabilizes their structure. This destroys the cell's ability to use its cytoskeleton in a flexible manner. Specifically, docetaxel binds to the β-subunit of tubulin. Tubulin is the "building block" of mictotubules, and the binding of docetaxel locks these building blocks in place. The resulting microtubule/docetaxel complex does not have the ability to disassemble. This adversely affects cell function because the shortening and lengthening of microtubules (termed dynamic instability) is necessary for their function as a transportation highway for the cell. Chromosomes, for example, rely upon this property of microtubules during mitosis. Further research has indicated that docetaxel induces programmed cell death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 (B-cell leukemia 2) and thus arresting its function.
Status:
US Approved Rx
(1998)
Source:
NDA021004
(1998)
Source URL:
First approved in 1995
Source:
NDA020564
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Lamivudine is a reverse transcriptase inhibitor used alone or in combination with other classes of anti-human immunodeficiency virus (HIV) drugs in the treatment of HIV infection. This molecule has two stereo-centers, thus giving rise to four stereoisomers: (+/-)-cis-lamivudine and (+/-)-trans-lamivudine. The latter is considered to be impurity of the pharmaceutically active isomer, (-)-cis-lamivudine.
Status:
US Approved Rx
(1997)
Source:
ANDA074826
(1997)
Source URL:
First approved in 1990
Source:
PROSOM by ABBOTT
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Estazolam, a triazolobenzodiazepine derivative, is an oral hypnotic agent with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Used for the short-term management of insomnia characterized by difficulty in falling asleep, frequent nocturnal awakenings, and/or early morning awakenings. Marketed under the brand names ProSom, Eurodin.
Status:
US Approved Rx
(2009)
Source:
NDA022395
(2009)
Source URL:
First approved in 1988
Source:
21 CFR 348
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Capsaicin is a topical analgesic that is FDA approved for the treatment of neuropathic pain associated with postherpetic neuralgia. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. Capsaicin is an agonist for the transient receptor potential vanilloid I receptor (TRPVI), which is an ion channel-receptor complex expressed on nociceptive nerve fibers in the skin. Common adverse reactions include erythema, rash, pruritus, nausea.
Status:
US Approved Rx
(2016)
Source:
ANDA207096
(2016)
Source URL:
First approved in 1987
Source:
UCEPHAN by B BRAUN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Phenylacetic acid (abr. PAA and synonyms are: α-toluic acid, benzeneacetic acid, alpha tolylic acid, 2-phenylacetic acid, β-phenylacetic acid) is an organic compound containing a phenyl functional group and acarboxylic acid functional group. Because it is used in the illicit production of phenylacetone (used in the manufacture of substituted amphetamines), it is subject to controls in countries including the United States and China Phenylacetic acid is used in some perfumes, possessing a honey-like odor in low concentrations, and is also used in penicillin G production. It is also employed to treat type II hyperammonemia to help reduce the amounts of ammonia in a patient's bloodstream by forming phenylacetyl-CoA, which then reacts with nitrogen-rich glutamine to form phenylacetylglutamine. This compound is then secreted by the patient's body. In Phase 2 of clinical research it investigated in the treatment of Brain and Central Nervous System Tumors.