U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 28 of 28 results

Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)


Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)


Status:
Other

Class (Stereo):
CHEMICAL (RACEMIC)

4-Methoxyamphetamine (Para-methoxyamphetamine, PMA) is a synthetic drug chemically similar to the recreational drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and often replaces MDMA in tablets. Numerous cases of intoxication have been documented and fatal cases involving PMA have been described. PMA induces toxicity at lower doses than MDMA. Clinical symptoms specific to PMA poisoning include life-threatening hyperthermia, breathing difficulties, tachycardia, rhabdomyolysis, and acute renal failure. In the scarce studies conducted in laboratory animals, PMA has shown cardiovascular alterations in dogs, hyperthermia on a high ambient temperature, hallucinogen properties, and disruption of operant behavior in rats. A slight motor activity stimulation, lower than that induced by MDMA, has also been reported. The effects of PMA on brain neurotransmission are similar to those of MDMA, thus, PMA increases serotonin (5-hydroxytryptophan or 5-HT) release from the synaptic terminal and blocks its reuptake; it also acts upon noradrenergic and dopaminergic terminals but in a lesser proportion, and can also delay the metabolism of these monoamines by inhibition of monoamine oxidase (MAO)
Armodafinil is the R-enantiomer of modafinil, a wake-promoting agent, that primarily affects areas of the brain involved in controlling wakefulness. Armodafinil is an indirect dopamine receptor agonist; both armodafinil and modafinil bind in vitro to the dopamine transporter and inhibit dopamine reuptake. Armodafinil tablets are indicated to improve wakefulness in adult patients with excessive sleepiness associated with obstructive sleep apnea (OSA), narcolepsy, or shift work disorder (SWD). Once-daily armodafinil was generally well tolerated in adult patients with excessive sleepiness associated with OSA (despite treatment of the underlying condition), narcolepsy or SWSD.
DL-Methamphetamine (also known as +/- Methamphetamin) is a central nervous system stimulant and sympathomimetic with actions and uses similar to DEXTROAMPHETAMINE. The smokable form is a drug of abuse and is referred to as crank, crystal, crystal meth, ice, and speed. Methamphetamine is a mixture of two isomers. One isomer called Dextro, or D Methamphetamine, is active as a central nervous system stimulant and it is a DEA Schedule 2 controlled drug commonly called “Meth” or “Speed”. Desoxyn, a prescription drug also contains D Methamphetamine. The other isomer, Levo, or L Methamphetamine is not a DEA controlled drug. It is found in an over the counter medicine called “Vicks Inhaler” or as the prescription drug, Selegiline. (+)-methamphetamine is the more physiologically active isomer. In addition to some medications, L Methamphetamine can be produced in the illegal production of street Methamphetamine.
Status:
First marketed in 1931
Source:
Benzedrine Inhaler
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.