U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 552 results

Olopatadine is an antihistamine (as well as anticholinergic and mast cell stabilizer) used to treat itching associated with allergic conjunctivitis (eye allergies). Olopatadine is a selective histamine H1 antagonist that binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. Olopatadine is devoid of effects on alpha-adrenergic, dopamine and muscarinic type 1 and 2 receptors. Some known side effects include a headache (7% of occurrence), eye burning and/or stinging (5%), blurred vision, dry eyes, foreign body sensation, hyperemia, keratitis, eyelid edema, pruritus, asthenia, sore throat (pharyngitis), rhinitis, sinusitis, and taste perversion.
Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. Mycophenolic acid (MPA) is a fungal metabolite that was initially discovered by Bartolomeo Gosio in 1893 as an antibiotic against anthrax bacillus, Bacillus anthracis. It is an uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation to DNA. It was approved under the brand name Myfortic for the prophylaxis of organ rejection in adult patients receiving a kidney transplant and is indicated for the prophylaxis of organ rejection in pediatric patients 5 years of age and older who are at least 6 months post kidney transplant. Myfortic is to be used in combination with cyclosporine and corticosteroids.
Levocetirizine dihydrochloride is the R enantiomer of cetirizine hydrochloride, a racemic compound with antihistaminic properties. Levocetirizine is a third-generation non-sedative antihistamine indicated for the relief of symptoms associated with seasonal and perennial allergic rhinitis and uncomplicated skin manifestations of chronic idiopathic urticaria. It was developed from the second-generation antihistamine cetirizine. Levocetirizine was approved by the United States Food and Drug Administration on May 25, 2007 and is marketed under the brand XYZAL. Its principal effects are mediated via selective inhibition of H1 receptors. The antihistaminic activity of levocetirizine has been documented in a variety of animal and human models. In vitro binding studies revealed that levocetirizine has an affinity for the human H1-receptor 2-fold higher than that of cetirizine (Ki = 3 nmol/L vs. 6 nmol/L, respectively). The clinical relevance of this finding is unknown.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tacrolimus, previously known as FK506, is the active ingredient in Prograf. Tacrolimus is a macrolide immunosuppressant produced by Streptomyces tsukubaensis. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus inhibits T-lymphocyte activation, although the exact mechanism of action is not known. Experimental evidence suggests that tacrolimus binds to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin inhibited. This effect may prevent the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines (such as interleukin-2, gamma interferon). The net result is the inhibition of T-lymphocyte activation (i.e., immunosuppression). Prograf is indicated for the prophylaxis of organ rejection in patients receiving allogeneic liver transplants, kidney transplants, heart transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.

Class (Stereo):
CHEMICAL (ACHIRAL)



Loratadine is a derivative of azatadine and a second-generation histamine H1 receptor antagonist used in the treatment of allergic rhinitis and urticaria. Unlike most classical antihistamines (histamine H1 antagonists) it lacks central nervous system depressing effects such as drowsiness. Loratadine competes with free histamine and exhibits specific, selective peripheral H1 antagonistic activity. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms (eg. nasal congestion, watery eyes) brought on by histamine. Loratadine has low affinity for cholinergic receptors and does not exhibit any appreciable alpha-adrenergic blocking activity in-vitro. Loratadine also appears to suppress the release of histamine and leukotrienes from animal mast cells, and the release of leukotrienes from human lung fragments, although the clinical importance of this is unknown.
Cetirizine, a human metabolite of hydroxyzine, is an antihistamine; its principal effects are mediated via selective inhibition of peripheral H1 receptors. It is indicated for the relief of nasal and non-nasal symptoms associated with seasonal or perennial allergic rhinitis, hay fever and chronic idiopathic urticaria. Commonly reported adverse reactions of cetirizine include headache, dry mouth and drowsiness or fatigue. Pharmacokinetic interaction studies with Cetirizine in adults were conducted with pseudoephedrine, antipyrine, ketoconazole, erythromycin and azithromycin. No interactions were observed.
Auranofin (brand name Ridaura) is an organogold compound classified by the World Health Organization as an antirheumatic agent. Ridaura is indicated in the management of adults with active classical or definite rheumatoid arthritis (ARA criteria) who have had an insufficient therapeutic response to, or are intolerant of, an adequate trial of full doses of one or more nonsteroidal anti-inflammatory drugs. The mechanism of action of is not understood. In patients with adult rheumatoid arthritis, it may modify disease activity as manifested by synovitis and associated symptoms, and reflected by laboratory parameters such as ESR. There is no substantial evidence, however, that gold-containing compounds induce remission of rheumatoid arthritis. It may act as an inhibitor of kappab kinase and thioredoxin reductase, which would lead to a decreased immune response and decreased free radical production, respectively. In patients with inflammatory arthritis, such as adult and juvenile rheumatoid arthritis, gold salts can decrease the inflammation of the joint lining. This effect can prevent destruction of bone and cartilage. Ridaura should be added to a comprehensive baseline program, including non-drug therapies. Unlike anti-inflammatory drugs, RIDAURA does not produce an immediate response. Therapeutic effects may be seen after three to four months of treatment, although improvement has not been seen in some patients before six months.
Cyclosporins are cyclic polypeptide macrolides that were originally derived from the soil fungus Tolypocladium inflatum. Cyclosporine (also known as cyclosporine A) was discovered by Sandoz and developed for the tretment of immune disorders. The drug was approved by FDA for such diseases as Rheumatoid Arthritis, Psoriasis (Neoral), Keratoconjunctivitis sicca (Restasis) and prevention of transplant rejections (Neoral and Sandimmune). Cyclosporine’s primary immunosuppressive mechanism of action is inhibition of T-lymphocyte function. Upon administration cyclosporine binds to cyclophilin A and thus inhibits calcineurin, leading to immune system suppression.
Clemastine is an antihistamine with anticholinergic (drying) and sedative side effects. Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. It is used for the relief of symptoms associated with allergic rhinitis such as sneezing, rhinorrhea, pruritus and acrimation. Also for the management of mild, uncomplicated allergic skin manifestations of urticaria and angioedema. Used as self-medication for temporary relief of symptoms associated with the common cold.
Azathioprine remains one of the most important and widely prescribed drugs for immunosuppression/immunomodulation in autoimmune disease over 30 years after its introduction. Azathioprine is licensed for the treatment of only a limited range of autoimmune disorders, which is probably a reflection on the age of the drug. Widening the license for a drug is both costly and time consuming, and it would make no commercial sense for manufacturers to do so, at this late stage of life, for azathioprine. However, azathioprine is now so well established as an immunomodulating drug in autoimmune disorders that it represents the gold standard by which other drugs are compared. Azathioprine is indicated as an adjunct for the prevention of rejection in renal homotransplantation. It is also indicated for the management of active rheumatoid arthritis to reduce signs and symptoms. The combined use of azathioprine tablets with disease modifying anti-rheumatic drugs (DMARDs) has not been studied for either added benefit or unexpected adverse effects. The use of azathioprine tablets with these agents cannot be recommended. Azathioprine is a pro-drug, converted in the body to the active metabolite 6-mercaptopurine. Azathioprine acts to inhibit purine synthesis necessary for the proliferation of cells, especially leukocytes and lymphocytes. It is a safe and effective drug used alone in certain autoimmune diseases, or in combination with other immunosuppressants in organ transplantation. Its most severe side effect is bone marrow suppression, and it should not be given in conjunction with purine analogues such as allopurinol. The enzyme thiopurine S-methyltransferase (TPMT) deactivates 6-mercaptopurine. Genetic polymorphisms of TPMT can lead to excessive drug toxicity, thus assay of serum TPMT may be useful to prevent this complication. Azathioprine is metabolized to 6-mercaptopurine (6-MP). Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after 8 hours. Activation of 6-mercaptopurine occurs via hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and a series of multi-enzymatic processes involving kinases to form 6-thioguanine nucleotides (6-TGNs) as major metabolites.