{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Food or Food Product[C1949]|Food Component[C1930]|Artificial Sweetener" in comments (approximate match)
Status:
US Previously Marketed
Source:
Benzosulphinide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Benzosulphinide U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Status:
US Previously Marketed
Source:
Benzosulphinide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Benzosulphinide U.S.P.
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Saccharin is the most established of the artificial sweeteners on the market, this mixture of dextrose and saccharin has been in use for over a century and is found in diet versions of soft drinks. It is 300-500 times sweeter than sugar and contains zero calories. In 1977, the FDA tried to ban its use after evidence showed it caused cancer in rats. Extensive lobbying by the diet food industry allowed products to stay on the shelves as long as they carried warnings about the cancer risks in animals. This warning was removed in 2001 when the Calorie Control Council insisted the link between animal and human cancers could not automatically be made. Consumption of saccharin-sweetened products can benefit diabetics as the substance goes directly through the human digestive system without being digested. While saccharin has no food energy, it can trigger the release of insulin in humans due to its sweet taste. The T1R2/R3 sweet taste receptor exist on the surface of pancreatic beta cells. Saccharin is a unique in that it inhibits glucose-stimulated insulin secretion (GSIS) at submaximal and maximal glucose concentrations, with the other sweeteners having no effect. Investigation of saccharin’s dose-response characteristics showed that concentrations of 0.1 and 0.5 mM stimulated insulin secretion, while concentrations of 1 and 2.5 mM inhibited insulin secretion. Saccharin’s effect on insulin secretion was shown to be reversible in INS-1 832/13 clonal pancreatic beta cells after chronic exposure to 1 mM saccharin. Artificial sweeteners may affect insulin secretion via interaction with the sweet taste receptor, also saccharin may affect other cellular processes linked to insulin secretion, and that these effects are both time- and concentration-dependent
Status:
Possibly Marketed Outside US
Source:
Acesulfame K by Hoechst
Source URL:
First approved in 2002
Source:
NDA022410
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acesulfame is a non-nutritive sweetener Acesulfame potassium is a calorie-free artificial sweetener, also known as Acesulfame K or Ace K (K being the symbol for potassium), and marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number (additive code) E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG (now Nutrinova). In chemical structure, acesulfame potassium is the potassium salt of 6-methyl-1,2,3- oxathiazine-4(3H)-one 2,2-dioxide. Acesulfame K has been approved for a variety of uses in more than 90 countries. In 1998, the FDA broadened the US approval of acesulfame K to allow its use in nonalcoholic beverages. It is often blended with sucralose and used to decrease the bitter aftertaste of aspartame. A wide range of low-calorie foods and drinks contain acesulfame K, including table-top sweeteners, chewing gum, jam, dairy products, frozen desserts, drinks and baked goods. Acesulfame K is not broken down when digested, nor is it stored in the body. After being consumed, it is quickly absorbed by the body and then rapidly excreted, unchanged.
Status:
Possibly Marketed Outside US
Source:
M001
(2004)
Source URL:
First approved in 1995
Source:
NDA021591
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Calcium Saccharin Anhydrous is an odorless, white crystalline powder sweetener. It is used as a sugar substitute in foods and beverages. It has been used in food for many years. In cosmetics and personal care products, it is used in the formulation of dental products, mouthwashes and lipstick.