U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 271 - 280 of 10251 results

Amantadine hydrochloride has pharmacological actions as both an anti-Parkinson and an antiviral drug. The mechanism by which amantadine exerts its antiviral activity is not clearly understood. It appears to mainly prevent the release of infectious viral nucleic acid into the host cell by interfering with the function of the transmembrane domain of the viral M2 protein. In certain cases, amantadine is also known to prevent virus assembly during virus replication. It does not appear to interfere with the immunogenicity of inactivated influenza A virus vaccine. The mechanism of action of amantadine in the treatment of Parkinson's disease and drug-induced extrapyramidal reactions is not known. Data from earlier animal studies suggest that amantadine hydrochloride may have direct and indirect effects on dopamine neurons. More recent studies have demonstrated that amantadine is a weak, non-competitive NMDA receptor antagonist (K1 = 10µM). Although amantadine has not been shown to possess direct anticholinergic activity in animal studies, clinically, it exhibits anticholinergic-like side effects such as dry mouth, urinary retention, and constipation. Amantadine was approved by the FDA in 1966 as a prophylactic agent against Asian influenza, and eventually received approval for the treatment of influenza virus A in adults. In 1969, it was also discovered by accident to help reduce symptoms of Parkinson's disease, drug-induced extrapyramidal syndromes, and akathisia.
Furosemide, a sulfonamide-type loop diuretic structurally related to bumetanide, is used to manage hypertension and edema associated with congestive heart failure, cirrhosis, and renal disease, including the nephrotic syndrome. Furosemide inhibits water reabsorption in the nephron by blocking the sodium-potassium-chloride cotransporter (NKCC2) in the thick ascending limb of the loop of Henle. This is achieved through competitive inhibition at the chloride binding site on the cotransporter, thus preventing the transport of sodium from the lumen of the loop of Henle into the basolateral interstitium. Consequently, the lumen becomes more hypertonic while the interstitium becomes less hypertonic, which in turn diminishes the osmotic gradient for water reabsorption throughout the nephron. Because the thick ascending limb is responsible for 25% of sodium reabsorption in the nephron, furosemide is a very potent diuretic. Furosemide is sold under the brand name Lasix among others.
Status:
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Oxazepam is the first of a chemical series of compounds, the 3-hydroxybenzodiazepinones. A therapeutic agent providing versatility and flexibility in control of common emotional disturbances, this product exerts prompt action in a wide variety of disorders associated with anxiety, tension, agitation and irritability, and anxiety associated with depression. Oxazepam has distinguished itself clinically from other benzodiazepines by virtue of its excellent tolerance. Because of its excellent tolerance, dosage is very flexible, and it is, therefore, possible to utilize oxazepam in a wide spectrum of anxiety-related disorders including the psychoses. Oxazepam has been administered to humans by the oral route only. Usual ranges for kinetic parameters are: elimination half-life, 5 to 15 hours; volume of distribution, 0.6 to 2.0 L/kg; clearance, 0.9 to 2.0 ml/min/kg. Age and liver disease have a minimal influence on oxazepam kinetics, but renal disease is associated with a prolonged half-life and increased volume of distribution.
Indometacin (INN and BAN) or indomethacin (AAN, USAN, and former BAN) is a nonsteroidal anti-inflammatory drug (NSAID) commonly used as a prescription medication to reduce fever, pain, stiffness, and swelling from inflammation. Indomethacin has analgesic, anti-inflammatory, and antipyretic properties. The mechanism of action of Indometacin, like that of other NSAIDs, is not completely understood but involves inhibition of cyclooxygenase (COX-1 and COX-2). Indomethacin is a potent inhibitor of prostaglandin synthesis in vitro. Indomethacin concentrations reached during therapy have produced in vivo effects. Prostaglandins sensitize afferent nerves and potentiate the action of bradykinin in inducing pain in animal models. Prostaglandins are mediators of inflammation. Because indomethacin is an inhibitor of prostaglandin synthesis, its mode of action may be due to a decrease of prostaglandins in peripheral tissues. Indometacin is indicated for: Moderate to severe rheumatoid arthritis including acute flares of chronic disease, Moderate to severe ankylosing spondylitis, Moderate to severe osteoarthritis, Acute painful shoulder (bursitis and/or tendinitis), Acute gouty arthritis. In general, adverse effects seen with indomethacin are similar to all other NSAIDs. For instance, indometacin inhibits both cyclooxygenase-1 and cyclooxygenase-2, it inhibits the production of prostaglandins in the stomach and intestines, which maintain the mucous lining of the gastrointestinal tract. Indometacin, therefore, like other non-selective COX inhibitors can cause peptic ulcers. These ulcers can result in serious bleeding and/or perforation requiring hospitalization of the patient. To reduce the possibility of peptic ulcers, indomethacin should be prescribed at the lowest dosage needed to achieve a therapeutic effect, usually between 50–200 mg/day. It should always be taken with food. Nearly all patients benefit from an ulcer protective drug (e.g. highly dosed antacids, ranitidine 150 mg at bedtime, or omeprazole 20 mg at bedtime). Other common gastrointestinal complaints, including dyspepsia, heartburn and mild diarrhea are less serious and rarely require discontinuation of indomethacin.
Doxapram is an analeptic agent (a stimulant of the central nervous system). The respiratory stimulant action is manifested by an increase in tidal volume associated with a slight increase in respiratory rate. A pressor response may result following doxapram administration. Provided there is no impairment of cardiac function, the pressor effect is more marked in hypovolemic than in normovolemic states. The pressor response is due to the improved cardiac output rather than peripheral vasoconstriction. Following doxapram administration, an increased release of catecholamines has been noted. Doxapram produces respiratory stimulation mediated through the peripheral carotid chemoreceptors. It is thought to stimulate the carotid body by inhibiting certain potassium channels. Used as temporary measure in hospitalized patients with acute respiratory insufficiency superimposed on chronic obstructive pulmonary disease.
Dactinomycin (actinomycin D) was isolated from Streptomyces by Selman Waksman in 1940s. The antibiotic shows anti-cancer activity; it was approved by FDA for the treatment of different cancer conditions among which are Ewing's sarcoma, Wilm's tumor, gestational trophoblastic disease, etc. Dactinomycin exerts its action by binding to DNA (preferably to GC motif) and thus inhibiting transcription.
Desipramine is a tricyclic antidepressant that was approved by the FDA in 1964. It was derived from imipramine, which was the first tricyclic antidepressant to be manufactured. Desipramine is one of many tricyclic antidepressants, and this type of antidepressant gets its name due to its three-ring chemical structure. Desipramine, a secondary amine tricyclic antidepressant, is structurally related to both the skeletal muscle relaxant cyclobenzaprine and the thioxanthene antipsychotics such as thiothixene. It is the active metabolite of imipramine, a tertiary amine TCA. The acute effects of desipramine include inhibition of noradrenaline re-uptake at noradrenergic nerve endings and inhibition of serotonin (5-hydroxy tryptamine, 5HT) re-uptake at the serotoninergic nerve endings in the central nervous system. Desipramine exhibits greater noradrenergic re-uptake inhibition compared to the tertiary amine TCA imipramine. In addition to inhibiting neurotransmitter re-uptake, desipramine down-regulates beta-adrenergic receptors in the cerebral cortex and sensitizes serotonergic receptors with chronic use. The overall effect is increased serotonergic transmission. Antidepressant effects are typically observed 2 - 4 weeks following the onset of therapy though some patients may require up to 8 weeks of therapy prior to symptom improvement. Patients experiencing more severe depressive episodes may respond quicker than those with mild depressive symptoms. Desipramine is marketed under the trade name Norpramin, indicated for the treatment of depression.
Status:
First approved in 1964
Source:
Virac by Ruson
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Valproic acid (VPA; valproate; di-n-propylacetic acid, DPA; 2-propylpentanoic acid, or 2-propylvaleric acid) was first synthesized in 1882, by Burton. FDA approved valproic acid for the treatment of manic episodes associated with bipolar disorder, for the monotherapy and adjunctive therapy of complex partial seizures and simple and complex absence seizures and adjunctive therapy in patients with multiple seizure types that include absence seizures and for the prophylaxis of migraine headaches. The mechanisms of VPA which seem to be of clinical importance in the treatment of epilepsy include increased gamma-aminobutyric acid (GABA)-ergic activity, reduction in excitatory neurotransmission, and modification of monoamines. Recently, it was discovered that the VPA is a class I selective histone deacetylase inhibitor. This activity can be distinguished from its therapeutically exploited antiepileptic activity.
Lincomycin (LINCOCIN®) is an antibiotic produced by Streptomyces lincolnensis (Streptomycetaceae family). It has been used in the treatment of staphylococcal, streptococcal, and Bacteroides fragilis infections. Lincomycin (LINCOCIN®) inhibits protein synthesis in susceptible bacteria by binding to the 50S subunits of bacterial ribosomes and preventing peptide bond formation upon transcription. It is usually considered bacteriostatic, but may be bactericidal in high concentrations or when used against highly susceptible microorganisms.
Diazepam is a benzodiazepine first discovered at Hoffman-La Roche in the late 1950s. Diazepam was approved by FDA for the treatment of anxiety disorders as well as for such conditions as skeletal muscle spasm, alcohol withdrawal syndrom and convulsions (under the most known brand Valium). The drug acts by binding to GABA-A receptors and potentiating GABA evoked current. Chronic diazepam use is associated with tolerance, dependence, and withdrawal.