{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for amphotericin root_references_url in Reference URL (approximate match)
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Mitoguazone is a guanylhydrazone derivative with potential antineoplastic activity. Mitoguazone inhibits S-adenosyl-L-methionine decarboxylase (SAMD), an enzyme involved in the synthesis of polyamines, resulting in a decreased proliferation of tumor cells, antimitochondrial effects, and p53-independent apoptosis. In the 1960s the drug was investigated in clinical trials. Despite the responses in acute leukemia, chronic myelogenous leukemia, lymphoma, multiple myeloma, head and neck cancer, esophageal cancer and other types of cancer, the development of the drug was discontinued because of marked myelosuppression and mucositis. Using a weekly schedule of administration, mitoguazone had minimal toxicity and showed limited activity in patients with lymphoma, esophageal cancer, prostate cancer, and other types of tumors.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Mitoguazone is a guanylhydrazone derivative with potential antineoplastic activity. Mitoguazone inhibits S-adenosyl-L-methionine decarboxylase (SAMD), an enzyme involved in the synthesis of polyamines, resulting in a decreased proliferation of tumor cells, antimitochondrial effects, and p53-independent apoptosis. In the 1960s the drug was investigated in clinical trials. Despite the responses in acute leukemia, chronic myelogenous leukemia, lymphoma, multiple myeloma, head and neck cancer, esophageal cancer and other types of cancer, the development of the drug was discontinued because of marked myelosuppression and mucositis. Using a weekly schedule of administration, mitoguazone had minimal toxicity and showed limited activity in patients with lymphoma, esophageal cancer, prostate cancer, and other types of tumors.
Status:
US Approved Rx
(1984)
Source:
ANDA062533
(1984)
Source URL:
First approved in 1966
Source:
GARAMYCIN by SCHERING
Source URL:
Class:
MIXTURE
Targets:
Conditions:
Gentamicin is an antibiotic of the aminoglycoside group, is derived by the growth of Micromonospora purpurea, an actinomycete. Gentamicin is a complex of three different closely related aminoglycoside sulfates, Gentamicins C1, C2, and C1a. Gentamicin is a broad-spectrum antibiotic, but may cause ear and kidney damage. Gentamicin binds to the prokaryotic ribosome, inhibiting protein synthesis in susceptible bacteria. It is bactericidal in vitro against Gram-positive and Gram-negative bacteria. Adverse reactions include adverse renal effects, neurotoxicity (dizziness, vertigo, tinnitus, roaring in the ears, hearing loss, peripheral neuropathy or encephalopathy), respiratory depression, lethargy, confusion, depression, visual disturbances, etc.
Status:
US Previously Marketed
Source:
CAPASTAT SULFATE by EPIC PHARMA LLC
(1971)
Source URL:
First approved in 1971
Source:
CAPASTAT SULFATE by EPIC PHARMA LLC
Source URL:
Class:
MIXTURE
Targets:
Conditions:
Capreomycin is an antibiotic, which is used in combination other antituberculosis drugs fro the treatment of pulmonary infections caused by capreomycin-susceptible strains of M. tuberculosis when the primary agents (isoniazid, rifampin, ethambutol, aminosalicylic acid, and streptomycin) have been ineffective or cannot be used because of toxicity or the presence of resistant tubercle bacilli. Little is known about capreomycin's exact mechanism of action, but it is thought to inhibit protein synthesis by binding to the 70S ribosomal unit. Capreomycin also binds to components in the bacterial cell which result in the production of abnormal proteins.
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT
Status:
Other
Class:
CONCEPT