U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 231 - 240 of 408 results

Status:
US Approved OTC
Source:
21 CFR 333.120 first aid antibiotic:ointment oxytetracycline hydrochloride (combination only)
Source URL:
First approved in 1950
Source:
Terramycin HCl by Pfizer
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Oxytetracycline, a tetracycline analog isolated from the actinomycete streptomyces rimosus, was the second of the broad-spectrum tetracycline group of antibiotics to be discovered The drug is used for the prophylaxis and local treatment of superficial ocular infections due to oxytetracycline- and polymyxin-sensitive organisms for animal use only. These infections include the following: Ocular infections due to streptococci, rickettsiae E. coli, and A. aerogenes (such as conjunctivitis, keratitis, pinkeye, corneal ulcer, and blepharitis in dogs); ocular infections due to secondary bacterial complications associated with distemper in dogs; and ocular infections due to bacterial inflammatory conditions which may occur secondary to other diseases in dogs. Allergic reactions may occasionally occur. Treatment should be discontinued if reactions are severe. If new infections due to nonsensitive bacteria or fungi appear during therapy, appropriate measures should be taken. Oxytetracycline inhibits cell growth by inhibiting translation. It binds to the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. The binding is reversible in nature. Oxytetracycline is lipophilic and can easily pass through the cell membrane or passively diffuses through porin channels in the bacterial membrane.
Lidocaine is a local anesthetic and cardiac depressant used to numb tissue in a specific area and for management of cardiac arrhythmias, particularly those of ventricular origins, such as occur with acute myocardial infarction. Lidocaine alters signal conduction in neurons by blocking the fast voltage-gated Na+ channels in the neuronal cell membrane responsible for signal propagation. With sufficient blockage, the membrane of the postsynaptic neuron will not depolarize and will thus fail to transmit an action potential. This creates the anesthetic effect by not merely preventing pain signals from propagating to the brain, but by stopping them before they begin. Careful titration allows for a high degree of selectivity in the blockage of sensory neurons, whereas higher concentrations also affect other modalities of neuron signaling. Lidocaine exerts an antiarrhythmic effect by increasing the electrical stimulation threshold of the ventricle during diastole. In usual therapeutic doses, lidocaine hydrochloride produces no change in myocardial contractility, in systemic arterial pressure, or an absolute refractory period. The efficacy profile of lidocaine as a local anesthetic is characterized by a rapid onset of action and intermediate duration of efficacy. Therefore, lidocaine is suitable for infiltration, block, and surface anesthesia. Longer-acting substances such as bupivacaine are sometimes given preference for spinal and epidural anesthesias; lidocaine, though, has the advantage of a rapid onset of action. Lidocaine is also the most important class-1b antiarrhythmic drug; it is used intravenously for the treatment of ventricular arrhythmias (for acute myocardial infarction, digoxin poisoning, cardioversion, or cardiac catheterization) if amiodarone is not available or contraindicated. Lidocaine should be given for this indication after defibrillation, CPR, and vasopressors have been initiated. A routine preventative dose is no longer recommended after a myocardial infarction as the overall benefit is not convincing. Inhaled lidocaine can be used as a cough suppressor acting peripherally to reduce the cough reflex. This application can be implemented as a safety and comfort measure for patients who have to be intubated, as it reduces the incidence of coughing and any tracheal damage it might cause when emerging from anesthesia. Adverse drug reactions (ADRs) are rare when lidocaine is used as a local anesthetic and is administered correctly. Most ADRs associated with lidocaine for anesthesia relate to administration technique (resulting in systemic exposure) or pharmacological effects of anesthesia, and allergic reactions only rarely occur. Systemic exposure to excessive quantities of lidocaine mainly result in a central nervous system (CNS) and cardiovascular effects – CNS effects usually occur at lower blood plasma concentrations and additional cardiovascular effects present at higher concentrations, though cardiovascular collapse may also occur with low concentrations.
Status:
US Approved OTC
Source:
21 CFR 346.10(i) anorectal:local anesthetic tetracaine hydrochloride
Source URL:
First marketed in 1932

Class (Stereo):
CHEMICAL (ACHIRAL)



Tetracaine (INN, also known as amethocaine; trade name Pontocaine. Ametop and Dicaine) is a potent local anesthetic of the ester group. It is mainly used topically in ophthalmology and as an antipruritic, and it has been used in spinal anesthesia. Tetracaine blocks sodium ion channels required for the initiation and conduction of neuronal impulses thereby affecting local anesthesia. In biomedical research, tetracaine is used to alter the function of calcium release channels (ryanodine receptors) that control the release of calcium from intracellular stores. Tetracaine is an allosteric blocker of channel function. At low concentrations, tetracaine causes an initial inhibition of spontaneous calcium release events, while at high concentrations, tetracaine blocks release completely.
Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases. Caffeine is used by mouth or rectally in combination with painkillers (such as aspirin and acetaminophen) and a chemical called ergotamine for treating migraineheadaches. It is also used with painkillers for simple headaches and preventing and treating headaches after epidural anesthesia. Caffeine creams are applied to the skin to reduce redness and itching in dermatitis. Healthcare providers sometimes give caffeine intravenously (by IV) for headache after epidural anesthesia, breathing problems in newborns, and to increase urine flow. In foods, caffeine is used as an ingredient in soft drinks, energy drinks, and other beverages.
Status:
US Approved OTC
Source:
21 CFR 331.11(c)(3) antacid:bismuth-containing bismuth subcarbonate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Bibrocathol (trade names Noviform and Posiformin) is a well-established topical antiseptic for the treatment of acute eyelid diseases like blepharitis. Eye ointments containing 2 or 5 % bibrocathol and the excipients liquid paraffin, white soft paraffin, and lanolin have been marketed since 1967 for the treatment of eye irritation, chronic blepharitis, and uninfected corneal injuries. Reports of clinical experience with bibrocathol for inflammation of the edge of the palpebra exist since the beginning of the 20th century. Until recently, no controlled, randomized clinical studies according to the guidelines for Good Clinical Practice for Trials on Medical Products for Human Use (GCP) as defined by the International Conference on Harmonisation (ICH) have been performed with bibrocathol 2 % ointment, as these were not required for marketing authorization in the 1960s. A first double-blind, prospective, controlled, GCP-compliant clinical study was recently performed to assess the efficacy of bibrocathol 5 % (Noviform®) in acute blepharitis. It demonstrated superior efficacy of bibrocathol 5 % ointment as compared to an ointment vehicle (placebo) after 2 weeks of treatment as assessed by a combined measure of slit-lamp examination results and patients’ subjective complaints.
Doripenem is a synthetic carbapenem that has broad antibacterial potency against aerobic and anaerobic gram-positive and gram-negative bacteria. Doripenem is structurally related to beta-lactam antibiotics and shares the bactericidal mode of action of other β-lactam antibiotics by targeting penicillin-binding proteins (PBPs) to inhibit the biosynthesis of the bacterial cell wall. Doripenem is resistant to hydrolysis by most β-lactamases and is resistant to inactivation by renal dehydropeptidases. Doripenem has many similarities to the other carbapenems, as well as some important differences, such as greater potency against Pseudomonas aeruginosa. It was found to be similar to comparator agents. The most common adverse effects related to doripenem therapy were headache, nausea, diarrhea, rash, and phlebitis.
Status:
US Previously Marketed
First approved in 2007

Class (Stereo):
CHEMICAL (ABSOLUTE)



Retapamulin is a topical antibiotic which was approved by FDA (Altabax brand name) for the treatment of impetigo due to Staphylococcus aureus (methicillin-susceptible isolates only) or Streptococcus pyogenes. Retapamulin exerts its antibacterial action by binding to 50S subunit of the bacterial ribosome.
Status:
US Previously Marketed
First approved in 2006

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Telbivudine is an antiviral drug used in the treatment of hepatitis B infection. It is marketed by Swiss pharmaceutical company Novartis under the trade names Sebivo (Europe) and Tyzeka (United States). Clinical trials have shown it to be significantly more effective than lamivudine or adefovir, and less likely to cause resistance. Telbivudine is a synthetic thymidine nucleoside analogue; it is the L-isomer of thymidine. It is taken orally in a dose of 600 mg once daily with or without food. TYZEKA is the trade name for telbivudine, a synthetic thymidine nucleoside analogue with activity against hepatitis B virus (HBV). The chemical name for telbivudine is 1-((2S,4R,5S)-4-hydroxy-5-hydroxymethyltetrahydrofuran-2-y1)-5-methyl-1H-pyrimidine-2,4-dione, or 1-(2-deoxy-β-L-ribofuranosyl)-5-methyluracil. Telbivudine is a synthetic thymidine nucleoside analogue with activity against HBV DNA polymerase. It is phosphorylated by cellular kinases to the active triphosphate form, which has an intracellular half-life of 14 hours. Telbivudine 5'-triphosphate inhibits HBV DNA polymerase (reverse transcriptase) by competing with the natural substrate, thymidine 5'-triphosphate. Incorporation of telbivudine 5'-triphosphate into viral DNA causes DNA chain termination, resulting in inhibition of HBV replication. Telbivudine is an inhibitor of both HBV first strand (EC50 value = 1.3 ± 1.6 µM) and second strand synthesis (EC50 value = 0.2 ± 0.2 µM). Telbivudine 5'-triphosphate at concentrations up to 100 µM did not inhibit human cellular DNA polymerases α, β, or γ. No appreciable mitochondrial toxicity was observed in HepG2 cells treated with telbivudine at concentrations up to 10 µM.
French pharmaceutical company Hoechst Marion Roussel (later Sanofi-Aventis) began phase II/III clinical trials of telithromycin (HMR-3647) in 1998. Telithromycin was approved by the European Commission in July 2001 and subsequently went on sale in October 2001. In the US, telithromycin received U.S. Food and Drug Administration (FDA) approval on April 1, 2004 Telithromycin is the first ketolide antibiotic to enter clinical use and is sold under the brand name of Ketek. After significant controversy regarding safety and research fraud, the US Food and Drug Administration sharply curtailed the approved uses of the drug in 2007. Telithromycin is a semi-synthetic erythromycin derivative. It is created by substituting a ketogroup for the cladinose sugar and adding a carbamate ring in the lactone ring. An alkyl-aryl moiety is attached to this carbamate ring. Furthermore, the carbon at position 6 has been methylated, as is the case in clarithromycin, to achieve better acid-stability. For the treatment of Pneumococcal infection, acute sinusitis, acute bacterial tonsillitis, acute bronchitis and bronchiolitis, lower respiratory tract infection and lobar (pneumococcal) pneumonia. KETEK tablets contain telithromycin, a semisynthetic antibacterial in the ketolide class for oral administration. Telithromycin blocks protein synthesis by binding to domains II and V of 23S rRNA of the 50S ribosomal subunit. By binding at domain II, telithromycin retains activity against gram-positive cocci (e.g., Streptococcus pneumoniae) in the presence of resistance mediated by methylases (erm genes) that alter the domain V binding site of telithromycin. Telithromycin may also inhibit the assembly of nascent ribosomal units.
Status:
US Previously Marketed
First approved in 2004

Class (Stereo):
CHEMICAL (ACHIRAL)



Methyl aminolevulinate is a prodrug that is metabolised to Protoporphyrin IX (a photosensitizer) used in photodynamic therapy. Photosensitization following application of methyl aminolevulinate cream occurs through the metabolic conversion of methyl aminolevulinate (prodrug) to photoactive porphyrins (PAP), which accumulates in the skin lesions to which the cream has been applied. When exposed to light of appropriate wavelength and energy, the accumulated photoactive porphyrins produce a photodynamic reaction, resulting in a cytotoxic process dependent upon the simultaneous presence of oxygen. The absorption of light results in an excited state of porphyrin molecules, and subsequent spin transfer from photoactive porphyrins to molecular oxygen generates singlet oxygen, which can further react to form superoxide and hydroxyl radicals. Methyl aminolevulinate is used for topical use, in combination with 570 to 670 nm wavelength red light illumination, in the treatment of non-hyperkeratotic actinic keratoses of the face and scalp in immunocompetent patients when used in conjunction with lesion preparation (debridement using a sharp dermal curette).

Showing 231 - 240 of 408 results