U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 211 - 220 of 47384 results

Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Naratriptan (trade names include Amerge and Naramig) is a triptan drug marketed by GlaxoSmithKline and is used for the treatment of migraine headaches.Naratriptan is a selective agonist of serotonin (5-hydroxytryptamine; 5-HT) type 1B and 1D receptors. It is structurally and pharmacologically related to other selective 5-HT1B/1D receptor agonist. Naratriptan has only a weak affinity for 5-HT1A, 5-HT5A, and 5-HT7 receptors and no significant affinity or pharmacological activity at 5-HT2, 5-HT3 or 5-HT4 receptor subtypes or at alpha1-, alpha2-, or beta-adrenergic, dopamine1,; dopamine2; muscarinic, or benzodiazepine receptors. This action in humans correlates with the relief of migraine headache. In addition to causing vasoconstriction, experimental data from animal studies show that Naratriptan also activates 5-HT1 receptors on peripheral terminals of the trigeminal nerve innervating cranial blood vessels, which may also contribute to the antimigrainous effect of Naratriptan in humans.Three distinct pharmacological actions have been implicated in the antimigraine effect of the triptans: (1) stimulation of presynaptic 5-HT1D receptors, which serves to inhibit both dural vasodilation and inflammation; (2) direct inhibition of trigeminal nuclei cell excitability via 5-HT1B/1D receptor agonism in the brainstem and (3) vasoconstriction of meningeal, dural, cerebral or pial vessels as a result of vascular 5-HT1B receptor agonism.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Abacavir is a nucleoside reverse transcriptase inhibitor used for treatment of HIV infection (either alone or in combination with other antiviral drugs). It was shown that abacavir exerts its antiviral activity through its active metabolite, carbovir triphosphate. Carbovir triphosphate is a guanine analogue and a potent and selective inhibitor of viral reverse transcriptases. Upon administration, abacavir is first converted to abacavir monophosphate by ADK, then the monophosphate is deaminated to carbovir monophosphate, which is then anabolized by cellular kinases to carbovir diphosphate and then finally to carbovir triphosphate. Abacavir causes hypersensitivity reaction in patients with HLA-B*57:01 allele.
PRIFTIN® (rifapentine) is indicated in adults and children 12 years and older for the treatment of active pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis. PRIFTIN must always be used in combination with one or more antituberculosis (anti-TB) drugs to which the isolate is susceptible. Rifapentine is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. And it acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. Because of rapid emergence of resistant bacteria, use is restricted to treatment of mycobacterial infections and a few other indications. Rifampin is well absorbed when taken orally and is distributed widely in body tissues and fluids, including the CSF. It is metabolized in the liver and eliminated in bile and, to a much lesser extent, in urine, but dose adjustments are unnecessary with renal insufficiency. Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages.
Status:
First approved in 1998

Class (Stereo):
CHEMICAL (ABSOLUTE)



Eptifibatide is a platelet aggregation inhibitor - an anti-coagulant that selectively blocks the platelet glycoprotein IIb/IIIa receptor. It is a cyclic heptapeptide derived from a protein found in the venom of the southeastern pygmy rattlesnake. It belongs to the class of the so called arginin-glycin-aspartat-mimetics and reversibly binds to platelets. Eptifibatide inhibits platelet aggregation by reversibly binding to the platelet receptor glycoprotein (GP) IIb/IIIa of human platelets, thus preventing the binding of fibrinogen, von Willebrand factor, and other adhesive ligands. Inhibition of platelet aggregation occurs in a dose- and concentration-dependent manner. It is used for treatment of myocardial infarction and acute coronary syndrome.
Citalopram (brand names: Celexa, Cipramil, and others) is an antidepressant drug of the selective serotonin reuptake inhibitor (SSRI) class. It has U.S. Food and Drug Administration approval to treat major depression,[2]which it received in 1998, and is prescribed off-label for other conditions. In Australia, the UK, Germany, Portugal, Poland, and most European countries, it is licensed for depressive episodes and panic disorder with or without agoraphobia. In Spain, it is also used for obsessive-compulsive disorder. Citalopram HBr is a racemic bicyclic phthalane derivative designated (±)-1-(3-dimethylaminopropyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5carbonitrile, HBr. The mechanism of action of citalopram HBr as an antidepressant is presumed to be linked to potentiation of serotonergic activity in the central nervous system (CNS) resulting from its inhibition of CNS neuronal reuptake of serotonin (5-HT). In vitro and in vivo studies in animals suggest that citalopram is a highly selective serotonin reuptake inhibitor (SSRI) with minimal effects on norepinephrine (NE) and dopamine (DA) neuronal reuptake. The single-and multiple-dose pharmacokinetics of citalopram are linear and dose-proportional in a dose range of 10-60 mg/day. Biotransformation of citalopram is mainly hepatic, with a mean terminal half-life of about 35 hours.
Montelukast (SINGULAIR®) is a selective and orally active leukotriene D4 (LTD4) receptor antagonist that inhibits the cysteinyl leukotriene CysLT1 receptor. It is indicated for the prophylaxis and chronic treatment of asthma, for prevention of exercise-induced bronchoconstriction, and for the relief of symptoms of seasonal allergic rhinitis. LTD4 is a product of arachidonic acid metabolism and is released from various cells, including mast cells and eosinophils. This eicosanoid binds to CysLT1 receptor found in the human airway (including airway smooth muscle cells and airway macrophages) and on other pro-inflammatory cells (including eosinophils and certain myeloid stem cells). Cysteinyl leukotriene receptors (CysLTs) have been correlated with the pathophysiology of asthma and allergic rhinitis. In asthma, leukotriene-mediated effects include airway edema, smooth muscle contraction, and altered cellular activity associated with the inflammatory process. In allergic rhinitis, CysLTs are released from the nasal mucosa after allergen exposure during both earlyand late-phase reactions and are associated with symptoms of allergic rhinitis. Montelukast (SINGULAIR®) binds with high affinity and selectivity to the CysLT1 (in preference to other pharmacologically important airway receptors, such as the prostanoid, cholinergic, or beta-adrenergic receptor). It inhibits physiologic actions of LTD4 at the CysLT1 receptor without any agonist activity.
Sildenafil (Viagra, Revatio) is a PDE5 inhibitor which was approved by FDA for the treatment of erectile disfunction and adults with pulmonary arterial hypertension. Upon administration sildenafil inhibits PDE5 and results in elevated level of cyclic guanosine monophosphate and smooth muscle relaxation.
Quetiapine, marketed as SEROQUEL XR, is an atypical antipsychotic approved for the treatment of schizophrenia, bipolar disorder, and along with an antidepressant to treat major depressive disorder. The mechanism of action of SEROQUEL XR in the treatment of schizophrenia, bipolar disorder and major depressive disorder (MDD), is unknown. However, its efficacy in schizophrenia could be mediated through a combination of dopamine type 2 (D2) and serotonin type 2A (5HT2A) antagonism. The active metabolite, N-desalkyl quetiapine (norquetiapine), has similar activity at D2, but greater activity at 5HT2A receptors, than the parent drug (quetiapine). Quetiapine’s efficacy in bipolar depression and MDD may partly be explained by the high affinity and potent inhibitory effects that norquetiapine exhibits for the norepinephrine transporter. Antagonism at receptors other than dopamine and serotonin with similar or greater affinities may explain some of the other effects of quetiapine and norquetiapine: antagonism at histamine H1 receptors may explain the somnolence, antagonism at adrenergic α1b receptors may explain the orthostatic hypotension, and antagonism at muscarinic M1 receptors may explain the anticholinergic effects. Quetiapine and norquetiapine have affinity for multiple neurotransmitter receptors including dopamine D1 and D2, serotonin 5HT1A and 5HT2A, histamine H1, muscarinic M1, and adrenergic α1b and α2 receptors. Quetiapine differs from norquetiapine in having no appreciable affinity for muscarinic M1 receptors whereas norquetiapine has high affinity. Quetiapine and norquetiapine lack appreciable affinity for benzodiazepine receptors.
Ropinirole (INN; trade names Requip, Repreve, Ronirol, Adartrel) is a dopamine agonist of the non-ergoline class of medications, used in the treatment of Parkinson's disease and restless legs syndrome. Although the precise mechanism of action of ropinirole as a treatment for Parkinson's disease is unknown, it is believed to be related to its ability to stimulate dopamine receptors in the striatum. This conclusion is supported by electrophysiologic studies in animals that have demonstrated that ropinirole influences striatal neuronal firing rates via activation of dopamine receptors in the striatum and the substantia nigra, the site of neurons that send projections to the striatum. Ropinirole is a nonergot dopamine agonist with high relative in vitro specificity and full intrinsic activity at the D2 subfamily of dopamine receptors, binding with higher affinity to D3 than to D2 or D4 receptor subtypes. The relevance of D3 receptor binding in Parkinson's disease is unknown. The mechanism of ropinirole-induced postural hypotension is presumed to be due to a D2 -mediated blunting of the noradrenergic response to standing and subsequent decrease in peripheral vascular resistance. Ropinirole can cause nausea, dizziness, hallucinations, orthostatic hypotension, and sudden sleep attacks during the daytime. Unusual side effects specific to D3 agonists such as ropinirole and pramipexole can include hypersexuality, punding, and compulsive gambling, even in patients without a history of these behaviors.
Tazarotene a novel acetylenic retinoid is known to be effective in the topical treatment of psoriasis and acne. Tazarotene is rapidly and completely metabolized to its active metabolite tazarotenic acid. The exact mechanism of action of tazarotenic acid in the treatment of psoriasis and acne is not clearly defined. However, it is thought that the selective interaction of tazarotenic acid with the retinoic acid receptor (RAR) family (RARα, RARβ, and RARγ) and the subsequent induction of both positive and negative gene regulatory effects may be involved.