U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 201 - 210 of 4695 results

Mercaptopurine, marketed under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Mercaptopurine competes with hypoxanthine and guanine for the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and is itself converted to thioinosinic acid (TIMP). This intracellular nucleotide inhibits several reactions involving inosinic acid (IMP), including the conversion of IMP to xanthylic acid (XMP) and the conversion of IMP to adenylic acid (AMP) via adenylosuccinate (SAMP). In addition, 6-methylthioinosinate (MTIMP) is formed by the methylation of TIMP. Both TIMP and MTIMP have been reported to inhibit glutamine-5-phosphoribosylpyrophosphate amidotransferase, the first enzyme unique to the de novo pathway for purine ribonucleotide synthesis. Experiments indicate that radiolabeled mercaptopurine may be recovered from the DNA in the form of deoxythioguanosine. Some mercaptopurine is converted to nucleotide derivatives of 6-thioguanine (6-TG) by the sequential actions of inosinate (IMP) dehydrogenase and xanthylate (XMP) aminase, converting TIMP to thioguanylic acid (TGMP). PURINETHOL (mercaptopurine) is indicated for maintenance therapy of acute lymphatic (lymphocytic, lymphoblastic) leukemia as part of a combination regimen. The response to this agent depends upon the particular subclassification of acute lymphatic leukemia and the age of the patient (pediatric or adult).
Erythromycin cyclocarbonate (Davercin) is a first generation semi-synthetic erythromycin. It is active against Gram-positive and some Gram-negative microorganisms. Davercin shows comparable or better in vitro potency, low host toxicity and improved pharmacokinetics compared with erythromycin. It is approved for the treatment of acne, atypical pneumonia (caused by Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila), whooping cough (treatment and prevention), urethritis (caused by Ureaplasma urealyticum and Chlamydia trachomatis), gastrointestinal infection caused by Campylobacter spp., short-term infections of the skin and soft tissues (e.g. acne, staphylococcal dermatitis). In streptococcal infections, diphtheria, gonorrhea, early syphilis in patients who are allergic to penicillin, and in the prevention of bacterial endocarditis before the planned dental procedures. Adverse effects are: nausea, vomiting, abdominal pain, diarrhea, skin allergic reactions.
Leucovorin is a compound similar to folic acid, which is a necessary vitamin. It has been around and in use for many decades. Leucovorin is a medication frequently used in combination with the chemotherapy drugs fluoruracil and methotrexate. Leucovorin is not a chemotherapy drug itself, however it is used in addition to these chemotherapy drugs to enhance anticancer effects (with fluorouracil) or to help prevent or lessen side effects (with methotrexate). Leucovorin is also used by itself to treat certain anemia problems when folic acid deficiency is present.
Levoleucovorin is the pharmacologically active isomer of leucovorin or 5-formyl tetrahydrofolic acid, a folate analog . Levoleucovorin does not require reduction by the enzyme dihydrofolate reductase in order to participate in reactions utilizing folates as a source of “onecarbon” moieties. Administration of levoleucovorin can counteract the therapeutic and toxic effects of folic acid antagonists such as methotrexate, which act by inhibiting dihydrofolate reductase. Levoleucovorin can enhance the therapeutic and toxic effects of fluoropyrimidines used in cancer therapy such as 5-fluorouracil. 5-fluorouracil is metabolized to 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP), which binds to and inhibits thymidylate synthase (an enzyme important in DNA repair and replication). Levoleucovorin is readily converted to another reduced folate, 5,10-methylenetetrahydrofolate, which acts to stabilize the binding of FdUMP to thymidylate synthase and thereby enhances the inhibition of this enzyme. Fusilev® (levoleucovorin) is approved by FDA for i) rescue after high-dose methotrexate therapy in osteosarcoma, ii) diminishing the toxicity and counteracting the effects of impaired methotrexate elimination and of inadvertent overdosage of folic acid antagonists and iii) in combination chemotherapy with 5-fluorouracil in the palliative treatment of patients with advanced metastatic colorectal cancer.
Promethazine is a phenothiazine derivative with histamine H1-blocking, antimuscarinic, and sedative properties. Promethazine HCl Oral Solution is useful for: perennial and seasonal allergic rhinitis. Allergic conjunctivitis due to inhalant allergens and foods. Anaphylactic reactions, as adjunctive therapy to epinephrine and other standard measures, after the acute manifestations have been controlled. Preoperative, postoperative, or obstetric sedation. Prevention and control of nausea and vomiting associated with certain types of anesthesia and surgery. Therapy adjunctive to meperidine or other analgesics for control of post-operative pain. Active and prophylactic treatment of motion sickness. Antiemetic therapy in postoperative patients.
Disulfiram is a carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. Disulfiram blocks the oxidation of alcohol at the acetaldehyde stage during alcohol metabolism following disulfiram intake causing an accumulation of acetaldehyde in the blood producing highly unpleasant symptoms. Disulfiram blocks the oxidation of alcohol through its irreversible inactivation of aldehyde dehydrogenase, which acts in the second step of ethanol utilization. In addition, disulfiram competitively binds and inhibits the peripheral benzodiazepine receptor, which may indicate some value in the treatment of the symptoms of alcohol withdrawal, however this activity has not been extensively studied. Used for the treatment and management of chronic alcoholism.
Norepinephrine (l-arterenol/Levarterenol or l-norepinephrine) is a sympathomimetic catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. Norepinephrine may be used for blood pressure control in certain acute hypotensive states (e.g., pheochromocytomectomy, sympathectomy, poliomyelitis, spinal anesthesia, myocardial infarction, septicemia, blood transfusion, and drug reactions) and as an adjunct in the treatment of cardiac arrest and profound hypotension. Norepinephrine performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Prolonged administration of any potent vasopressor may result in plasma volume depletion which should be continuously corrected by appropriate fluid and electrolyte replacement therapy.If plasma volumes are not corrected, hypotension may recur when Norepinephrine is discontinued, or blood pressure may be maintained at the risk of severe peripheral and visceral vasoconstriction (e.g., decreased renal perfusion)with diminution in blood flow and tissue perfusion with subsequent tissue hypoxia and lactic acidosis and possible ischemic injury. Gangrene of extremities has been rarely reported. Overdoses or conventional doses in hypersensitive persons (e.g., hyperthyroid patients) cause severe hypertension with violent headache, photophobia, stabbing retrosternal pain, pallor, intense sweating, and vomiting.
Oxycodone is a semisynthetic opioid used for the management of acute and chronic pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. Oxycodone is a highly selective full agonist of the μ-opioid receptor (MOR), with low affinity for the δ-opioid receptor (DOR) and κ-opioid receptor (KOR). After oxycodone binds to the MOR, a G protein-complex is released, which inhibits the release of neurotransmitters by the cell by reducing the amount of cAMP produced, closing calcium channels, and opening potassium channels. After a dose of conventional (instant-release) oral oxycodone, the onset of action is 10–30 minutes, and peak plasma levels of the drug are attained within roughly 30–60 minutes in contrast, after a dose of OxyContin (an oral controlled-release formulation), peak plasma levels of oxycodone occur in about three hours. The duration of instant-release oxycodone is 3 to 6 hours, although this can be variable depending on the individual. Oxycodone in the blood is distributed to skeletal muscle, liver, intestinal tract, lungs, spleen, and brain. Serious side effects of oxycodone include reduced sensitivity to pain (beyond the pain the drug is taken to reduce), euphoria, anxiolysis, feelings of relaxation, and respiratory depression. Common side effects of oxycodone include constipation (23%), nausea (23%), vomiting (12%), somnolence (23%), dizziness (13%), itching (13%), dry mouth (6%), and sweating (5%).
Methadone, sold under the brand names Dolophine among others, is an synthetic opioid that is used as the hydrochloride to treat pain and as maintenance therapy or to help with detoxification in people with opioid dependence. Methadone hydrochloride is a mu-agonist; a synthetic opioid analgesic with multiple actions qualitatively similar to those of morphine. Some data also indicate that methadone acts as an antagonist at the NMDA-receptor. The contribution of NMDA receptor antagonism to methadone’s efficacy is unknown. Most common adverse reactions are: lightheadedness, dizziness, sedation, nausea, vomiting, and sweating. Avoid use mixed agonist/antagonist and partial agonist opioid analgesics with DOLOPHINE because they may reduce analgesic effect of DOLOPHINE or precipitate withdrawal symptoms.
Ascorbic acid (vitamin C) is a water-soluble vitamin. It occurs as a white or slightly yellow crystal or powder with a slight acidic taste. Ascorbic acid is an electron donor, and this property accounts for all its known functions. As an electron donor, ascorbic acid is a potent water-soluble antioxidant in humans. Ascorbic acid acts as an antioxidant under physiologic conditions exhibiting a cross over role as a pro-oxidant in pathological conditions. Oxidized ascorbic acid (dehydroascorbic acid (DHA) directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas ascorbic acid did not have this effect. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling. Vitamin C is recommended for the prevention and treatment of scurvy. Its parenteral administration is desirable for patients with an acute deficiency or for those whose absorption of orally ingested ascorbic acid (vitamin c) is uncertain. Symptoms of mild deficiency may include faulty bone and tooth development, gingivitis, bleeding gums, and loosened teeth. Febrile states, chronic illness, and infection (pneumonia, whooping cough, tuberculosis, diphtheria, sinusitis, rheumatic fever, etc.) increase the need for ascorbic acid (vitamin c). Hemovascular disorders, burns, delayed fracture and wound healing are indications for an increase in the daily intake.