U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 4933 results

Ozanimod (previously known as RPC-1063) is a selective immune-inflammatory modulator of the G protein-coupled receptors sphingosine 1-phosphate 1 and 5, which are part of the sphingosine 1-phosphate (S1P) receptor family. Treatment with S1P receptor modulators interferes with S1P signaling and blocks the response of lymphocytes (a type of white blood cell) to exit signals from the lymph nodes, sequestering them within the nodes. The result is a downward modulation of circulating lymphocytes and anti-inflammatory activity by inhibiting cell migration to sites of inflammation. Ozanimod is currently in phase III clinical trials for the treatment of relapsing multiple sclerosis (RMS) and ulcerative colitis, and also in phase II clinical trials to determine whether it is effective in the treatment of Crohn's disease.
Selumetinib (AZD6244 or ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of Ras-Raf-mitogen-activated protein kinase kinase (MEK1/2). This inhibition can prevent ERK activation, disrupt downstream signal transduction, and inhibit cancer cell proliferation and survival. Selumetinib has shown tumour suppressive activity in multiple rodent models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AstraZeneca is responsible for development and commercialization of selumetinib.
ODM-201 (also known as BAY-1841788) is a non-steroidal antiandrogen, specifically, a full and high-affinity antagonist of the androgen receptor (AR), that is under development by Orion and Bayer HealthCare for the treatment of advanced, castration-resistant prostate cancer (CRPC). ODM-201 appears to negligibly cross the blood-brain-barrier. This is beneficial due to the reduced risk of seizures and other central side effects from off-target GABAA receptor inhibition that tends to occur in non-steroidal antiandrogens that are structurally similar to enzalutamide. Moreover, in accordance with its lack of central penetration, ODM-201 does not seem to increase testosterone levels in mice or humans, unlike other non-steroidal antiandrogens. Another advantage is that ODM-201 has been found to block the activity of all tested/well-known mutant ARs in prostate cancer, including the recently-identified clinically-relevant F876L mutation. ODM-201 has been studied in phase I and phase II clinical trials and has thus far been found to be effective and well-tolerated, with the most commonly reported side effects including fatigue, nausea, and diarrhea. No seizures have been observed.

Class (Stereo):
CHEMICAL (ACHIRAL)


GBT440 (previously GTx011) is a potent and direct drug for sickle cell treatment. In sickle cell anemia, abnormal hemoglobin molecules are formed, which causes problems for the flow of blood and oxygen through the body. GBT440 can selectively bind to hemoglobin, thereby increasing its affinity for oxygen. By inhibiting hemoglobin polymerization, it also prevents deformation of the red blood cells. GBT440, renamed Voxelotor, is thought to help prevent sickle cells blocking blood vessels, and therefore reduces pain (sickle cell crisis) experienced by patients. GBT440 is well absorbed following intravenous and oral administration, and quickly partitions into the red blood cell with a small part re‐distributed into the plasma. GBT440 was well tolerated in a randomized, placebo‐controlled, double blind, parallel group phase I/II study in healthy volunteers and sickle cell disease patients. Headache is the most reported adverse event related to the use of this drug, and no serious adverse events are known. A phase 3 clinical trial examining the efficacy and safety of the drug (compared to placebo) is planned to be completed in 2019. Voxelotor was also studied as a potential therapy for treatment of low oxygen levels in the blood of idiopathic pulmonary fibrosis patients, but this program was discontinued because of a lack of clinical benefits.
Alpelisib (BYL719) is a PI3Kα-selective inhibitor. PI3K-AKT-mTOR pathway is frequently activated in cancer, therefore investigational PI3K inhibitor alpelisib is considered to be effective as an anticancer agent and has been in clinical development by Novartis. Alpelisib have demonstrated activity in preclinical models of solid tumors and had favorable tolerability profiles, with the most common adverse events consistent with “on-target” inhibition of PI3K in early clinical studies. There are ongoing clinical trials of alpelisib in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme. Combination therapy with other chemo therapeutics may be preferable.

Class (Stereo):
CHEMICAL (ACHIRAL)

Trifarotene is a novel first-in-class fourth-generation topical retinoid. It is a potent and selective RAR gamma-agonist. In multiple mouse models, trifarotene exhibited superior comedolytic, anti-inflammatory and depigmenting activity compared with other topical retinoids. In this 52-week study, trifarotene was safe, well-tolerated and effective in moderate facial and truncal acne. Trifarotene is in phase II clinical trial for the treatment of ichthyosis.
Siponimod (BAF312) is a dual agonist at the sphingosine-1 phosphate receptors, S1PR1 and S1PR5. The S1P receptor is commonly found on the surface of specific cells residing in the central nervous system (CNS), that are responsible for causing CNS damage that drives loss of function in secondary progressive multiple sclerosis (SPMS). Siponimod (BAF312) enters the brain and by binding to these specific receptors, may prevent the activation of these harmful cells, helping to reduce the loss of physical and cognitive function associated with SPMS.
Pitolisant (INN) or tiprolisant (USAN) is a histamine receptor inverse agonist/antagonist selective for the H3 subtype. It has stimulant and nootropic effects in animal studies and may have several medical applications, having been researched for the treatment of narcolepsy, for which it has been granted orphan drug status in the EU and US. It is currently in clinical trials for schizophrenia and Parkinson’s disease. Pitolisant hydrochloride was approved by European Medicine Agency (EMA) on Mar 31, 2016. It was developed and marketed as Wakix® by Bioprojet in EU. Wakix® is available as the tablet for oral use, containing 4.5 mg and 18 mg of Pitolisant hydrochloride. The initial dose of 9 mg (two 4.5 mg, tablets) per day, and it should be used at the lowest effective dose, depending on individual patient response and tolerance, according to an up-titration scheme, without exceeding the dose of 36 mg/day. Pitolisant was the first clinically used H3 receptor inverse agonist.

Class (Stereo):
CHEMICAL (ABSOLUTE)

Cenobamate (also known as YKP3089) is a small molecule sodium channel blocker in development for the treatment of partial-onset seizures in adult patients. In mice and rats, Cenobamate displayed an anticonvulsant activity in the maximal electroshock test and prevented seizures induced by chemical convulsants such as pentylenetetrazol and picrotoxin. In addition, Cenobamate was reported to be effective in two models of focal seizure, the hippocampal kindled rat and the mouse 6 Hz psychomotor seizure models. Two completed adequate and well-controlled clinical studies demonstrated a significant reduction in focal seizures with Cenobamate in patients with epilepsy, and a long-term open-label phase 3 safety clinical trial is currently ongoing. Cenobamate is considered a new generation antiepileptic therapy and clinical trials have shown that it may be more effective and safer than existing drugs. If licensed, Cenobamate will offer a new adjunctive treatment option for patients with partial focal epilepsy.

Class (Stereo):
CHEMICAL (RACEMIC)



Lofexidine is newly FDA approved in the United States under the brand name LUCEMYRA for the treatment of opioid withdrawal symptoms in adults. Lofexidine acts as an agonist to α2 adrenergic receptors. These receptors inhibit adenylyl cyclase activity, leading to the inhibition of the second messenger, cyclic adenosine monophosphate (cAMP). The inhibition of cAMP leads to potassium efflux through calcium-activated channels, blocking calcium ions from entering the nerve terminal, resulting in suppression of neural firing, inhibition of norepinephrine release. Lofexidine replaces the opioid-driven inhibition of cAMP production and moderating the symptoms of opioid withdrawal.

Showing 11 - 20 of 4933 results